12,999 research outputs found
Disentanglement and decoherence in two-spin and three-spin systems under dephasing
We compare disentanglement and decoherence rates within two-spin and
three-spin entangled systems subjected to all possible combinations of local
and collective pure dephasing noise combinations. In all cases, the bipartite
entanglement decay rate is found to be greater than or equal to the
dephasing-decoherence rates and often significantly greater. This sharpens
previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68,
165322 (2003)] and extends them to the three-spin context.Comment: 17 page
An ab initio and force field study on the conformation and chain flexibility of the dichlorophosphazene trimer
Ab initio molecular orbital calculations have been used to study the conformation, valence electron charge density, and chain flexibility of a dichlorophosphazene trimer (CH3[NP(Cl2)]3CH3). The calculations were carried out at the restricted Hartree-Fock level with the 6-31 G* basis set. The dichlorophosphazene trimer adopts a planar transcis conformation. The valence electron charge distribution indicates strong charge separations along the backbone of the molecule, and is in agreement with Dewar's island delocalization model for bonding in linear and cyclic phosphazenes. In order to determine the height of the torsional barrier (2,5 kcal/mol), the torsional potential of a central P-N bond of the trimer was studied with a rigid rotor scan and geometry optimizations of selected rotamers. The flexibility of the P-N-P bond angle contributes significantly to the chain flexibility. Based on the results of the ab initio calculations, an empirical force field for the dichlorophosphazene trimer was developed. The energy expression includes bond stretch, angle bend, electrostatic, van der Waals, and torsional potential terms. A relaxed scan with the force field achieves good agreement with the ab initio results for the torsional potential in the vicinity of the stable conformation, and an excellent agreement with the ab initio results on changes in the P2N2P3 bond angle and the N1P2 - N2P3 dihedral angle during a full rotation around the N2 - P3 bond
Towards violation of Born's rule: description of a simple experiment
Recently a new model with hidden variables of the wave type was elaborated,
so called prequantum classical statistical field theory (PCSFT). Roughly
speaking PCSFT is a classical signal theory applied to a special class of
signals -- "quantum systems". PCSFT reproduces successfully all probabilistic
predictions of QM, including correlations for entangled systems. This model
peacefully coexists with all known no-go theorems, including Bell's theorem. In
our approach QM is an approximate model. All probabilistic predictions of QM
are only (quite good) approximations of "real physical averages". The latter
are averages with respect to fluctuations of prequantum fields. In particular,
Born's rule is only an approximate rule. More precise experiments should
demonstrate its violation. We present a simple experiment which has to produce
statistical data violating Born's rule. Since the PCSFT-presentation of this
experiment may be difficult for experimenters, we reformulate consequences of
PCSFT in terms of the conventional wave function. In general, deviation from
Born's rule is rather small. We found an experiment amplifying this deviation.
We start with a toy example in section 2. Then we present a more realistic
example based on Gaussian states with very small dispersion, see section 3.Comment: The paper was completed with the description of an experiment with
Gaussian states with very small dispersion. This experiment should induce
violation of Born's rule, the fundamental law of Q
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Learning Markov Decision Processes for Model Checking
Constructing an accurate system model for formal model verification can be
both resource demanding and time-consuming. To alleviate this shortcoming,
algorithms have been proposed for automatically learning system models based on
observed system behaviors. In this paper we extend the algorithm on learning
probabilistic automata to reactive systems, where the observed system behavior
is in the form of alternating sequences of inputs and outputs. We propose an
algorithm for automatically learning a deterministic labeled Markov decision
process model from the observed behavior of a reactive system. The proposed
learning algorithm is adapted from algorithms for learning deterministic
probabilistic finite automata, and extended to include both probabilistic and
nondeterministic transitions. The algorithm is empirically analyzed and
evaluated by learning system models of slot machines. The evaluation is
performed by analyzing the probabilistic linear temporal logic properties of
the system as well as by analyzing the schedulers, in particular the optimal
schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345
Strain-stiffening in random packings of entangled granular chains
Random packings of granular chains are presented as a model polymer system to
investigate the contribution of entanglements to strain-stiffening in the
absence of Brownian motion. The chain packings are sheared in triaxial
compression experiments. For short chain lengths, these packings yield when the
shear stress exceeds a the scale of the confining pressure, similar to packings
of spherical particles. In contrast, packings of chains which are long enough
to form loops exhibit strain-stiffening, in which the effective stiffness of
the material increases with strain, similar to many polymer materials. The
latter packings can sustain stresses orders-of-magnitude greater than the
confining pressure, and do not yield until the chain links break. X-ray
tomography measurements reveal that the strain-stiffening packings contain
system-spanning clusters of entangled chains.Comment: 4 pages, 4 figures. submitted to Physical Review Letter
Applications of thermal energy storage in the cement industry
In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
- …
