1,981 research outputs found
Nurses\u27 Alumnae Association Bulletin, April 1955
Alumnae Notes
Annual Giving
Committee Reports
Digest of Alumnae Meetings
Graduation Awards - 1954
Legal Aspects of Nursing
Marriages
Necrology
New Arrivals
Physical Advances at Jefferson
President\u27s Message
School of Nursing Report
The Challenge of Neurosurgical Nursin
Public Libraries and the Internet 2006
Examines the capability of public libraries to provide and sustain public access Internet services and resources that meet community needs, including serving as the first choice for content, resources, services, and technology infrastructure
Vitamin B6 metabolites in idiopathic calcium stone formers: no evidence for a link to hyperoxaluria
Vitamin B6 metabolites and their potential correlates to urinary oxalate excretion in idiopathic calcium stone formers (ICSF) compared with healthy subjects were investigated. This clinical study was performed in a population of male ICSF with (Hyperoxalurics, n=55) or without hyperoxaluria (Normooxalurics, n=57) as well as in 100 healthy male control subjects. Pyridoxal 5'-phosphate serum concentration (S-pyridoxal 5'P) and 24-h urinary excretion of 4-pyridoxic acid (U-4pyridoxic acid) were measured using HPLC; 24-h urinary excretion of oxalate (U-oxalate) was measured concurrently. A subgroup of subjects (40 Hyperoxalurics, 15 Normooxalurics and 50 controls) underwent the same measurements before and after 7-day pyridoxine loading per os (pyridoxine hydrochloride, 300mg/d). Under usual conditions, U-4pyridoxic acid was similar in the three groups, whereas mean S-pyridoxal 5'P was significantly lower (p<0.0001) in the Hyperoxalurics (59.6±21.2nmol/L) and in the Normooxalurics (64.9±19.7nmol/L) than in the controls (86.0±31.0nmol/L). No correlation could be found between U-oxalate and U-4pyridoxic acid or S-pyridoxal 5'P. After B6 loading, S-pyridoxal 5'P was still significantly lower in the Hyperoxalurics (415±180nmol/L, p<0.001) and in the Normooxalurics (429±115nmol/L, p=0.036) than in the controls (546±180nmol/L), although there was no difference between groups for U-4pyridoxic acid. No correlation in any group could be found between changes in U-oxalate and changes in U-4pyridoxic acid or S-pyridoxal 5'P. Although there is no vitamin B6 deficiency in ICSF with or without hyperoxaluria, these patients, on average, have lower levels of S-pyridoxal 5'P than healthy subjects. However, this slight decrease does not seem to account for idiopathic hyperoxaluri
Simulation and Visualisation of Functional Landscapes: Effects of the Water Resource Competition between Plants
A-07-30International audienceVegetation ecosystem simulation and visualisation are challenging topics involving multidisciplinary aspects. In this paper, we present a new generic frame for the simulation of natural phenomena through manageable and interacting models. It focuses on the functional growth of large vegetal ecosystems, showing coherence for scales ranging from the individual plant to communities and with a particular attention to the effects of water resource competition between plants. The proposed approach is based on a model of plant growth in interaction with the environmental conditions. These are deduced from the climatic data (light, temperature, rainfall) and a model of soil hydrological budget. A set of layers is used to store the water resources and to build the interfaces between the environmental data and landscape components: temperature, rain, light, altitude, lakes, plant positions, biomass, cycles, etc. At the plant level, the simulation is performed for each individual by a structural-functional growth model, interacting with the plant's environment. Temperature is spatialised, changing according to altitude, and thus locally controls plant growth speed. The competition for water is based on a soil hydrological model taking into account rainfalls, water runoff, absorption, diffusion, percolation in soil. So far, the incoming light radiation is not studied in detail and is supposed constant. However, competition for light between plants is directly taken into account in the plant growth model. In our implementation, we propose a simple architecture for such a simulator and a simulation scheme to synchronise the water resource updating (on a temporal basis) and the plant growth cycles (determined by the sum of daily temperatures). The visualisation techniques are based on sets of layers, allowing both morphological and functional landscape views and providing interesting tools for ecosystem management. The implementation of the proposed frame leads to encouraging results that are presented and illustrate simple academic cases
Low temperature mobility in hafnium-oxide gated germanium p-channel metal-oxide-semiconductor field-effect transistors
Effective mobility measurements have been made at 4.2 K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%
Indentation and self-healing mechanisms of a self-assembled monolayer:a combined experimental and modeling study
A combination of in situ vibrational sum-frequency generation (SFG) spectroscopy and molecular-dynamics (MD) simulations has allowed us to study the effects of indentation of self-assembled octadecylphosphonic acid (ODPA) monolayers on α-Al2O3(0001). Stress-induced changes in the vibrational signatures of C–H stretching vibrations in SFG spectra and the results of MD simulations provide clear evidence for an increase in gauche-defect density in the monolayer as a response to indentation. A stress-dependent analysis indicates that the defect density reaches saturation at approximately 155 MPa. After stress is released, the MD simulations show an almost instantaneous healing of pressure-induced defects in good agreement with experimental results. The lateral extent of the contact areas was studied with colocalized SFG spectroscopy and compared to theoretical predictions for pressure gradients from Hertzian contact theory. SFG experiments reveal a gradual increase in gauche-defect density with pressure before saturation close to the contact center. Furthermore, our MD simulations show a spatial anisotropy of pressure-induced effects within ODPA domains: molecules tilted in the direction of the pressure gradient increase in tilt angle while those on the opposite side form gauche-defects
Revealing Hidden Potentials of the q-Space Signal in Breast Cancer
Mammography screening for early detection of breast lesions currently suffers
from high amounts of false positive findings, which result in unnecessary
invasive biopsies. Diffusion-weighted MR images (DWI) can help to reduce many
of these false-positive findings prior to biopsy. Current approaches estimate
tissue properties by means of quantitative parameters taken from generative,
biophysical models fit to the q-space encoded signal under certain assumptions
regarding noise and spatial homogeneity. This process is prone to fitting
instability and partial information loss due to model simplicity. We reveal
unexplored potentials of the signal by integrating all data processing
components into a convolutional neural network (CNN) architecture that is
designed to propagate clinical target information down to the raw input images.
This approach enables simultaneous and target-specific optimization of image
normalization, signal exploitation, global representation learning and
classification. Using a multicentric data set of 222 patients, we demonstrate
that our approach significantly improves clinical decision making with respect
to the current state of the art.Comment: Accepted conference paper at MICCAI 201
- …
