8,049 research outputs found

    Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity

    Get PDF
    Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron emissivity in the Milky Way using a 3 dimensional dataset instead of LOS-integrated intensity maps on the sky. Using absorbed HII regions we can measure the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a 2 dimensional to a 3 dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models we can simulate the synchrotron emissivities and compare them to the observed values in the catalog. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way, or an emissivity drop near the Galactic center. State-of-the-art GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad-hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&

    The Inclusive Semileptonic Decay Lepton Spectrum from BXeνB \to X e \overline{\nu}

    Full text link
    In this talk, we review the QCD calculation of the lepton spectrum from inclusive semileptonic BB decay. We compare this prediction to that of the ACCMM model. This latter work was done in collaboration with Csaba Csaki.Comment: MIT-CTP-2333, uses LATEX. Invited Talk, Presented at WHEPP-3 Workshop in Madras,India, January, 199

    The Theory of the Nucleon Spin

    Get PDF
    I discuss two topics of current interest in the study of the spin structure of the nucleon. First, I discuss whether there is a sum rule for the components of the nucleon's angular moments. Second, I discuss the measurement of the nucleon's transversity distribution in light of recent results reported by the HERMES collaboration at DESY.Comment: 15 pages, 8 figures, LaTeX using rspublic.cls and BoxedEPS macros; as submitted to Phil Trans A of the Royal Society for forthcoming volume: The Quark Structure of Matter; email correspondence to [email protected]

    Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys

    Full text link
    Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site driven ferroelectricity, even though the average tolerance factor is significantly smaller than unity and there is no stereochemically active A-site ion. This is due to the frustration of tilt instabilities by A-site disorder. There are very large off-centerings of the Li ions, which contribute strongly to the anisotropy between the tetragonal and rhombohedral ferroelectric states, yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure

    Parity-Violating Electron Scattering and Neucleon Structure

    Get PDF
    The measurement of parity violation in the helicity dependence of electron-nucleon scattering provides unique information about the basic quark structure of the nucleons. In this review, the general formalism of parity-violating electron scattering is presented, with emphasis on elastic electron-nucleon scattering. The physics issues addressed by such experiments is discussed, and the major goals of the presently envisioned experimental program are identified. %General aspects of the experimental technique are reviewed and A summary of results from a recent series of experiments is presented and the future prospects of this program are also discussed.Comment: 45 pages, 9 figure

    Spin alignment of vector meson in e+e- annihilation at Z0 pole

    Get PDF
    We calculate the spin density matrix of the vector meson produced in e+e- annihilation at Z^0 pole. We show that the data imply a significant polarization for the antiquark which is created in the fragmentation process of the polarized initial quark and combines with the fragmenting quark to form the vector meson. The direction of polarization is opposite to that of the fragmenting quark and the magnitude is of the order of 0.5. A qualitative explanation of this result based on the LUND string fragmentation model is given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.

    Chiral Symmetry and the Nucleon Structure Functions

    Get PDF
    The isospin asymmetry of the sea quark distribution as well as the unexpectedly small quark spin fraction of the nucleon are two outstanding discoveries recently made in the physics of deep-inelastic structure functions. We evaluate here the corresponding quark distribution functions within the framework of the chiral quark soliton model, which is an effective quark model of baryons maximally incorporating the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that the model can explain qualitative features of the above-mentioned nucleon structure functions within a single framework, thereby disclosing the importance of chiral symmetry in the physics of high energy deep-inelastic scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the original version was corrected. The discussion on the regularization dependence of distribution functions has been added. A comparison with the low energy-scale parametrization of Gloeck, Reya and Vogt has been mad
    corecore