8,049 research outputs found
Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity
Cosmic rays (CRs) and magnetic fields are dynamically important components in
the Galaxy, and their energy densities are comparable to that of the turbulent
interstellar gas. The interaction of CRs and Galactic magnetic fields produces
synchrotron radiation clearly visible in the radio regime. Detailed
measurements of synchrotron radiation averaged over the line-of-sight (LOS),
so-called synchrotron emissivities, can be used as a tracer of the CR density
and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron
emissivity in the Milky Way using a 3 dimensional dataset instead of
LOS-integrated intensity maps on the sky. Using absorbed HII regions we can
measure the synchrotron emissivity over a part of the LOS through the Galaxy,
changing from a 2 dimensional to a 3 dimensional view. Performing these
measurements on a large scale is one of the new applications of the window
opened by current low frequency arrays. Using various simple axisymmetric
emissivity models and a number of GMF-based emissivity models we can simulate
the synchrotron emissivities and compare them to the observed values in the
catalog. We present a catalog of low-frequency absorption measurements of HII
regions, their distances and electron temperatures, compiled from literature.
These data show that the axisymmetric emissivity models are not complex enough,
but the GMF-based emissivity models deliver a reasonable fit. These models
suggest that the fit can be improved by either an enhanced synchrotron
emissivity in the outer reaches of the Milky Way, or an emissivity drop near
the Galactic center. State-of-the-art GMF models plus a constant CR density
model cannot explain low-frequency absorption measurements, but the fits
improved with slight (ad-hoc) adaptations. It is clear that more detailed
models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&
Sources and budgets for CO and O-3 in the northeastern Pacific during the spring of 2001: Results from the PHOBEA-II Experiment
Abstract. Ground and airborne measurements of CO, ozone, and aerosols were obtained in th
The Inclusive Semileptonic Decay Lepton Spectrum from
In this talk, we review the QCD calculation of the lepton spectrum from
inclusive semileptonic decay. We compare this prediction to that of the
ACCMM model. This latter work was done in collaboration with Csaba Csaki.Comment: MIT-CTP-2333, uses LATEX. Invited Talk, Presented at WHEPP-3 Workshop
in Madras,India, January, 199
The Theory of the Nucleon Spin
I discuss two topics of current interest in the study of the spin structure
of the nucleon. First, I discuss whether there is a sum rule for the components
of the nucleon's angular moments. Second, I discuss the measurement of the
nucleon's transversity distribution in light of recent results reported by the
HERMES collaboration at DESY.Comment: 15 pages, 8 figures, LaTeX using rspublic.cls and BoxedEPS macros; as
submitted to Phil Trans A of the Royal Society for forthcoming volume: The
Quark Structure of Matter; email correspondence to [email protected]
Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys
Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site
driven ferroelectricity, even though the average tolerance factor is
significantly smaller than unity and there is no stereochemically active A-site
ion. This is due to the frustration of tilt instabilities by A-site disorder.
There are very large off-centerings of the Li ions, which contribute strongly
to the anisotropy between the tetragonal and rhombohedral ferroelectric states,
yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure
Parity-Violating Electron Scattering and Neucleon Structure
The measurement of parity violation in the helicity dependence of
electron-nucleon scattering provides unique information about the basic quark
structure of the nucleons. In this review, the general formalism of
parity-violating electron scattering is presented, with emphasis on elastic
electron-nucleon scattering. The physics issues addressed by such experiments
is discussed, and the major goals of the presently envisioned experimental
program are identified. %General aspects of the experimental technique are
reviewed and A summary of results from a recent series of experiments is
presented and the future prospects of this program are also discussed.Comment: 45 pages, 9 figure
Spin alignment of vector meson in e+e- annihilation at Z0 pole
We calculate the spin density matrix of the vector meson produced in e+e-
annihilation at Z^0 pole. We show that the data imply a significant
polarization for the antiquark which is created in the fragmentation process of
the polarized initial quark and combines with the fragmenting quark to form the
vector meson. The direction of polarization is opposite to that of the
fragmenting quark and the magnitude is of the order of 0.5. A qualitative
explanation of this result based on the LUND string fragmentation model is
given.Comment: 15 pages, 2 fgiures; submitted to Phys. Rev.
Chiral Symmetry and the Nucleon Structure Functions
The isospin asymmetry of the sea quark distribution as well as the
unexpectedly small quark spin fraction of the nucleon are two outstanding
discoveries recently made in the physics of deep-inelastic structure functions.
We evaluate here the corresponding quark distribution functions within the
framework of the chiral quark soliton model, which is an effective quark model
of baryons maximally incorporating the most important feature of low energy
QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that
the model can explain qualitative features of the above-mentioned nucleon
structure functions within a single framework, thereby disclosing the
importance of chiral symmetry in the physics of high energy deep-inelastic
scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the
original version was corrected. The discussion on the regularization
dependence of distribution functions has been added. A comparison with the
low energy-scale parametrization of Gloeck, Reya and Vogt has been mad
- …
