95 research outputs found

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    <em>Euclid</em>: Early Release Observations – Deep anatomy of nearby galaxies

    Get PDF
    \ua9 The Authors 2025. Euclid is poised to make significant advances in the study of nearby galaxies in the Local Universe. Here we present a first look at six galaxies observed for the Nearby Galaxy Showcase as part of the Euclid Early Release Observations acquired between August and November, 2023. These targets, three dwarf galaxies (Holmberg II, IC 10, and NGC 6822) and three spirals (IC 342, NGC 2403, and NGC 6744), range in distance from about 0.5 Mpc to 8.8 Mpc. We first assess the surface brightness depths in the stacked Euclid images, and confirm previous estimates in 100 arcsec2 regions for Visible Camera (VIS) of 1σ limits of 30.5 mag arcsec-2, but find deeper than previous estimates for Near-Infrared Spectrometer and Photometer (NISP) with 1σ = 29.2–29.4 mag arcsec-2. By combining Euclid HE, YE, and IE into RGB images, we illustrate the large field of view (FoV) covered by a single reference observing sequence (ROS), together with exquisite detail on scales of &lt;1–4 parsecs in these nearby galaxies. Our analysis of radial surface brightness and color profiles demonstrates that the photometric calibration of Euclid is consistent with what is expected for galaxy colors according to stellar synthesis models. We perform standard source-selection techniques for stellar photometry, and find approximately 1.3 million stars across the six galaxy fields. After subtracting foreground stars and background galaxies, and applying a color and magnitude selection, we extract stellar populations of different ages for the six galaxies. The resolved stellar photometry obtained with Euclid allows us to constrain the star-formation histories of these galaxies, which we do by disentangling the distributions of young stars and asymptotic giant branch and red giant branch stellar populations. We finally examine two galaxies individually for surrounding systems of dwarf galaxy satellites and globular cluster populations. Our analysis of the ensemble of dwarf satellites around NGC 6744 recovers all the previously known dwarf satellites within the Euclid FoV, and also confirms the satellite nature of a previously identified candidate, dw1909m6341, a nucleated dwarf spheroidal at the end of a spiral arm. Our new census of the globular clusters around NGC 2403 yields nine new star-cluster candidates, eight of which exhibit colors indicative of evolved stellar populations. In summary, our first investigation of six “showcase” galaxies demonstrates that Euclid is a powerful probe of stellar structure and stellar populations in nearby galaxies, and will provide vastly improved statistics on dwarf satellite systems and extragalactic globular clusters in the local Universe, among many other exciting results

    The Euclid mission design

    Get PDF
    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    Euclid II. The VIS instrument

    Get PDF
    This paper presents the specification, design, and development of the Visible Camera (VIS) on the European Space Agency's mission. VIS is a large optical-band imager with a field of view of 0.54 deg2^2 sampled at with an array of 609 Megapixels and a spatial resolution of . It will be used to survey approximately 14 000 deg2^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1z=0.1--1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes leveraged by With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and the extent to which this has changed with look-back time can be used to constrain the nature of dark energy and theories of gravity. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, specified to reach AB with a signal-to-noise ratio S/N in a single broad E (r+i+z)bandoverasixyearsurvey.Theparticularlychallengingaspectsoftheinstrumentarethecontrolandcalibrationofobservationalbiases,whichleadtostringentperformancerequirementsandcalibrationregimes.Withitscombinationofspatialresolution,calibrationknowledge,depth,andareacoveringmostoftheextraGalacticsky,VISwillalsoprovidealegacydatasetformanyotherfields.ThispaperdiscussestherationalebehindtheconceptionofVISanddescribestheinstrumentdesignanddevelopment,beforereportingtheprelaunchperformancederivedfromgroundcalibrationsandbriefresultsfromtheinorbitcommissioning.VISshouldreachfainterthanAB=25 band over a six-year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the conception of VIS and describes the instrument design and development, before reporting the prelaunch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than AB =25 with S/N10 S/N 10 for galaxies with a full width at half maximum of in a diameter aperture over the Wide Survey, and mABforaDeepSurveythatwillcovermorethan50degm_ AB for a Deep Survey that will cover more than 50 deg^2$. The paper also describes how the instrument works with the telescope and survey, and with the science data processing, to extract the cosmological information

    <em>Euclid</em>: Early Release Observations – The intracluster light and intracluster globular clusters of the Perseus cluster

    Get PDF
    \ua9 The Authors 2025. We study the intracluster light (ICL) and intracluster globular clusters (ICGCs) in the nearby Perseus cluster of galaxies using Euclid’s Early Release Observations. By modelling the isophotal and iso-density contours, we mapped the distributions and properties of the ICL and ICGCs out to radii of 200–600 kpc (up to ∼ 13 of the virial radius, depending on the parameter) from the brightest cluster galaxy (BCG). We find that the central 500 kpc of the Perseus cluster hosts 70 000 \ub1 2800 globular clusters, and 1.7 7 1012 L☉ of diffuse light from the BCG+ICL in the near-infrared HE. This accounts for 38 \ub1 6% of the cluster’s total stellar luminosity within this radius. The ICL and ICGCs share a coherent spatial distribution which suggests that they have a common origin or that a common potential governs their distribution. Their contours on the largest scales (&gt;200 kpc) are not centred on the BCG’s core, but are instead offset westwards by 60 kpc towards several luminous cluster galaxies. This offset is opposite to the displacement observed in the gaseous intracluster medium. The radial surface brightness profile of the BCG+ICL is best described by a double S\ue9rsic model, with 68 \ub1 4% of the HE light contained in the extended, outer component. The transition between these components occurs at ≈60 kpc, beyond which the isophotes become increasingly elliptical and off-centred. Furthermore, the radial ICGC number density profile closely follows the profile of the BCG+ICL only beyond this 60 kpc radius, where we find an average of 60–80 globular clusters per 109 M☉ of diffuse stellar mass. The BCG+ICL colour becomes increasingly blue with radius, consistent with the stellar populations in the ICL having subsolar metallicities [Fe/H] ∼−0.6 to −1.0. The colour of the ICL, and the specific frequency and luminosity function of the ICGCs suggest that the ICL+ICGCs were tidally stripped from the outskirts of massive satellites with masses of a few 71010 M☉, with an increasing contribution from dwarf galaxies at large radii

    DYX1C1 is required for axonemal dynein assembly and ciliary motility

    Full text link
    DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4)
    corecore