334 research outputs found
r-Java 2.0: the nuclear physics
[Aims:] We present r-Java 2.0, a nucleosynthesis code for open use that
performs r-process calculations as well as a suite of other analysis tools.
[Methods:] Equipped with a straightforward graphical user interface, r-Java 2.0
is capable of; simulating nuclear statistical equilibrium (NSE), calculating
r-process abundances for a wide range of input parameters and astrophysical
environments, computing the mass fragmentation from neutron-induced fission as
well as the study of individual nucleosynthesis processes. [Results:] In this
paper we discuss enhancements made to this version of r-Java, paramount of
which is the ability to solve the full reaction network. The sophisticated
fission methodology incorporated into r-Java 2.0 which includes three fission
channels (beta-delayed, neutron-induced and spontaneous fission) as well as
computation of the mass fragmentation is compared to the upper limit on mass
fission approximation. The effects of including beta-delayed neutron emission
on r-process yield is studied. The role of coulomb interactions in NSE
abundances is shown to be significant, supporting previous findings. A
comparative analysis was undertaken during the development of r-Java 2.0
whereby we reproduced the results found in literature from three other
r-process codes. This code is capable of simulating the physical environment
of; the high-entropy wind around a proto-neutron star, the ejecta from a
neutron star merger or the relativistic ejecta from a quark nova. As well the
users of r-Java 2.0 are given the freedom to define a custom environment. This
software provides an even platform for comparison of different proposed
r-process sites and is available for download from the website of the
Quark-Nova Project: http://quarknova.ucalgary.ca/Comment: 26 pages, 18 figures, 1 tabl
A Spallation Model for the Titanium-rich Supernova Remnant Cassiopeia A
Titanium-rich subluminous supernovae are rare and challenge current SN
nucleosynthesis models. We present a model in which ejecta from a standard
Supernova is impacted by a second explosion of the neutron star (a Quark-nova),
resulting in spallation reactions that lead to 56Ni destruction and 44Ti
creation under the right conditions. Basic calculations of the spallation
products shows that a delay between the two explosions of ~ 5 days reproduces
the observed abundance of 44Ti in Cas A and explains its low luminosity as a
result of the destruction of 56Ni. Our results could have important
implications for lightcurves of subluminous as well as superluminous
supernovae.Comment: Accepted/to be published in Physical Review Letters. [ for more info
on the Quark Nova, see: http://quarknova.ucalgary.ca/
Surface structure of Quark stars with magnetic fields
We investigate the impact of magnetic fields on the electron distribution in
the electrosphere of quark stars. For moderately strong magnetic fields G, quantization effects are generally weak due to the large number
density of electrons at surface, but can nevertheless affect the spectral
features of quark stars. We outline the main observational characteristics of
quark stars as determined by their surface emission, and briefly discuss their
formation in explosive events termed Quark-Novae, which may be connected to the
-process.Comment: 9 pages, 3 figures. Contribution to the proceedings of the IXth
Workshop on High Energy Physics Phenomenology (WHEPP-9), Bhubaneswar, India,
3-14 Jan. 200
Quark deconfinement in neutron star cores: The effects of spin-down
We study the role of spin-down in driving quark deconfinement in the high
density core of isolated neutron stars. Assuming spin-down to be solely due to
magnetic braking, we obtain typical timescales to quark deconfinement for
neutron stars that are born with Keplerian frequencies. Employing different
equations of state (EOS), we determine the minimum and maximum neutron star
masses that will allow for deconfinement via spin-down only. We find that the
time to reach deconfinement is strongly dependent on the magnetic field and
that this time is least for EOS that support the largest minimum mass at zero
spin, unless rotational effects on stellar structure are large. For a fiducial
critical density of for the transition to the quark phase
(g/cm is the saturation density of nuclear
matter), we find that neutron stars lighter than cannot reach a
deconfined phase. Depending on the EOS, neutron stars of more than
can enter a quark phase only if they are spinning faster than
about 3 milliseconds as observed now, whereas larger spin periods imply that
they are either already quark stars or will never become one.Comment: 4 pages, 4 figures, submitted to ApJ
Scalar-isoscalar excitation in dense quark matter
We study the spectrum of scalar-isoscalar excitations in the color-flavor
locked phase of dense quark matter. The sigma meson in this phase appears as a
four-quark state (of diquark and anti-diquark) with a well-defined mass and
extremely small width, as a consequence of it's small coupling to two pions.
The quark particle/hole degrees of freedom also contribute significantly to the
correlator just above the threshold 2\Delta where \Delta is the superconducting
gap.Comment: RevTeX, 11 pages, 4 fig
Direct Urca neutrino rate in colour superconducting quark matter
If deconfined quark matter exists inside compact stars, the primary cooling
mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e
and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour
superconductor, one possible manifestation of which is a condensate of
quark Cooper pairs in an electric-charge neutralising background of electrons.
We compute the neutrino emission rate from such a phase, including charged
pair-breaking and recombination effects, and find that on a material
temperature domain below T_c the pairing-induced suppression of the neutrino
emission rate is not uniformly exponential. If gapless modes are present in the
condensed phase, the emissivity at low temperatures is moderately enhanced
above that of completely unpaired matter. The importance of charged current
pair-breaking processes for neutrino emission both in the fully gapped and
partially gapped regimes is emphasised.Comment: 5 pages, 2 figures; to appear in Phys. Rev. C (Rapid Comm.
Thermal Photons in Strong Interactions
A brief survey is given on the current status of evaluating thermal
production of photons from a strongly interacting medium. Emphasis is put on
recent progress in assessing equilibrium emission rates in both hadronic and
quark-gluon matter. We also give an update on the status of comparing
theoretical calculations with experimental data from heavy-ion collisions at
the SPS, as well as prospects for RHIC. Finally, applications of photon rate
calculations to colorsuperconducting quark matter are discussed.Comment: Brief Review for Mod. Phys. Lett A, 15 pages latex incl. 12 ps/eps
figs and style file ws-mpla.cl
Neutrino Emission from Goldstone Modes in Dense Quark Matter
We calculate neutrino emissivities from the decay and scattering of Goldstone
bosons in the color-flavor-locked (CFL) phase of quarks at high baryon density.
Interactions in the CFL phase are described by an effective low-energy theory.
For temperatures in the tens of keV range, relevant to the long-term cooling of
neutron stars, the emissivities involving Goldstone bosons dominate over those
involving quarks, because gaps in the CFL phase are MeV while the
masses of Goldstone modes are on the order of 10 MeV. For the same reason, the
specific heat of the CFL phase is also dominated by the Goldstone modes.
Notwithstanding this, both the emissivity and the specific heat from the
massive modes remain rather small, because of their extremely small number
densities. The values of the emissivity and the specific heat imply that the
timescale for the cooling of the CFL core in isolation is y,
which makes the CFL phase invisible as the exterior layers of normal matter
surrounding the core will continue to cool through significantly more rapid
processes. If the CFL phase appears during the evolution of a proto-neutron
star, neutrino interactions with Goldstone bosons are expected to be
significantly more important since temperatures are high enough (
MeV) to admit large number densities of Goldstone modes.Comment: 29 pages, no figures. slightly modified text, one new eqn. and new
refs. adde
Bremsstrahlung neutrinos from electron-electron scattering in a relativistic degenerate electron plasma
We present a calculation of neutrino pair bremsstrahlung due to
electron-electron scattering in a relativistic degenerate plasma of electrons.
Proper treatment of the in-medium photon propagator, i.e., inclusion of Debye
screening of the longitudinal part and Landau damping of the transverse part,
leads to a neutrino emissivity which is several orders of magnitude larger than
when Debye screening is imposed for the tranverse part. Our results show that
this in-medium process can compete with other sources of neutrino radiation and
can, in some cases, even be the dominant neutrino emission mechanism. We also
discuss the natural extension to quark-quark bremsstrahlung in gapped and
ungapped quark matter.Comment: 15 pages, 7 figure
- …
