234 research outputs found

    KRYLOV SUBSPACE METHODS FOR SOLVING LARGE LYAPUNOV EQUATIONS

    Get PDF
    Published versio

    Fault-tolerant observer design with a tolerance measure for systems with sensor failure

    Get PDF
    A fault-tolerant switching observer design methodology is proposed. The aim is to maintain a desired level of closed-loop performance under a range of sensor fault scenarios while the fault-free nominal performance is optimized. The range of considered fault scenarios is determined by a minimum number p of assumed working sensors. Thus the smaller p is, the more fault tolerant is the observer. This is then used to define a fault tolerance measure for observer design. Due to the combinatorial nature of the problem, a semidefinite relaxation procedure is proposed to deal with the large number of fault scenarios for systems that have many vulnerable sensors. The procedure results in a significant reduction in the number of constraints needed to solve the problem. Two numerical examples are presented to illustrate the effectiveness of the fault-tolerant observer design

    General minimal residual Krylov subspace method for large-scale model reduction

    No full text
    Published versio

    A semidefinite relaxation procedure for fault-tolerant observer design

    Get PDF
    A fault-tolerant observer design methodology is proposed. The aim is to guarantee a minimum level of closed-loop performance under all possible sensor fault combinations while optimizing performance under the nominal, fault-free condition. A novel approach is proposed to tackle the combinatorial nature of the problem, which is computationally intractable even for a moderate number of sensors, by recasting the problem as a robust performance problem, where the uncertainty set is composed of all combinations of a set of binary variables. A procedure based on an elimination lemma and an extension of a semidefinite relaxation procedure for binary variables is then used to derive sufficient conditions (necessary and sufficient in the case of one binary variable) for the solution of the problem which significantly reduces the number of matrix inequalities needed to solve the problem. The procedure is illustrated by considering a fault-tolerant observer switching scheme in which the observer outputs track the actual sensor fault condition. A numerical example from an electric power application is presented to illustrate the effectiveness of the design

    Rational interpolation: Modified rational Arnoldi algorithm and Arnoldi-like equations

    No full text
    Published versio

    Implicitly restarted Krylov subspace methods for stable partial realizations

    No full text
    Published versio

    Modeling and control of TCV

    Get PDF
    Published versio

    Fault-tolerant Wide-area Control for Power Oscillation Damping

    No full text
    The effectiveness of using both local and remote (wide-area) feedback signals for power oscillation damping (POD) controllers is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance with only the local signals following a sudden loss of remote signals. A case study on the Nordic equivalent system is presented to show that the closed-loop response could deteriorate if the remote signals are lost. A fault-tolerant control (FTC) design methodology is presented to solve this problem and ensure an acceptable performance level even in case of loss of remote signals. The FTC design methodology is based on simultaneous regional pole-placement for normal and loss of (remote) signals conditions. First the problem is solved non-iteratively using a Linear Matrix Inequality (LMI) approximation and then it is shown that, although this procedure is linear and easy to implement, it has a drawback: the value of one of the control matrices is fixed before calculating the others. An iterative procedure is presented instead to ameliorate this problem and potentially improve the damping of the system. Case studies on the Nordic equivalent system confirm that the proposed iterative fault tolerant controller (FTCit) is able to improve performance against the non-iterative fault tolerant controller (FTC) and produce acceptable performance in case of loss of the remote signals while the response with a CC is unacceptable if a fault occurs
    corecore