65 research outputs found

    Informativeness of sleep cycle features in Bayesian assessment of newborn electroencephalographic maturation

    Get PDF
    Clinical experts assess the newborn brain development by analyzing and interpreting maturity-related features in sleep EEGs. Typically, these features widely vary during the sleep hours, and their informativeness can be different in different sleep stages. Normally, the level of muscle and electrode artifacts during the active sleep stage is higher than that during the quiet sleep that could reduce the informative-ness of features extracted from the active stage. In this paper, we use the methodology of Bayesian averaging over Decision Trees (DTs) to assess the newborn brain maturity and explore the informativeness of EEG features extracted from different sleep stages. This methodology has been shown providing the most accurate inference and estimates of uncertainty, while the use of DT models enables to find the EEG features most important for the brain maturity assessment

    Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity

    Get PDF
    We explored the feature extraction techniques for Bayesian assessment of EEG maturity of newborns in the context that the continuity of EEG is the most important feature for assessment of the brain development. The continuity is associated with EEG “stationarity” which we propose to evaluate with adaptive segmentation of EEG into pseudo-stationary intervals. The histograms of these intervals are then used as new features for the assessment of EEG maturity. In our experiments, we used Bayesian model averaging over decision trees to differentiate two age groups, each included 110 EEG recordings. The use of the proposed EEG features has shown, on average, a 6% increase in the accuracy of age differentiation

    Prediction of survival probabilities with Bayesian Decision Trees

    Get PDF
    Practitioners use Trauma and Injury Severity Score (TRISS) models for predicting the survival probability of an injured patient. The accuracy of TRISS predictions is acceptable for patients with up to three typical injuries, but unacceptable for patients with a larger number of injuries or with atypical injuries. Based on a regression model, the TRISS methodology does not provide the predictive density required for accurate assessment of risk. Moreover, the regression model is difficult to interpret. We therefore consider Bayesian inference for estimating the predictive distribution of survival. The inference is based on decision tree models which recursively split data along explanatory variables, and so practitioners can understand these models. We propose the Bayesian method for estimating the predictive density and show that it outperforms the TRISS method in terms of both goodness-of-fit and classification accuracy. The developed method has been made available for evaluation purposes as a stand-alone application

    Extraction of features from sleep EEG for Bayesian assessment of brain development

    Get PDF
    Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy.Leverhulme Trus

    Bayesian Assessment of Newborn Brain Maturity from Two-Channel Sleep Electroencephalograms

    Get PDF
    Newborn brain maturity can be assessed by expert analysis of maturity-related patterns recognizable in polysomnograms. Since 36 weeks most of these patterns become recognizable in EEG exclusively, particularly, in EEG recorded via the two central-temporal channels. The use of such EEG recordings enables experts to minimize the disturbance of sleep, preparation time as well as the movement artifacts. We assume that the brain maturity of newborns aged 36 weeks and older can be automatically assessed from the 2-channel sleep EEG as accurately as by expert analysis of the full polysomnographic information. We use Bayesian inference to test this assumption and assist experts to obtain the full probabilistic information on the EEG assessments. The Bayesian methodology is feasibly implemented with Monte Carlo integration over areas of high posterior probability density, however the existing techniques tend to provide biased assessments in the absence of prior information required to explore a model space in detail within a reasonable time. In this paper we aim to use the posterior information about EEG features to reduce possible bias in the assessments. The performance of the proposed method is tested on a set of EEG recordings

    Bayesian learning of models for estimating uncertainty in alert systems: application to air traffic conflict avoidance

    Get PDF
    Alert systems detect critical events which can happen in the short term. Uncertainties in data and in the models used for detection cause alert errors. In the case of air traffic control systems such as Short-Term Conflict Alert (STCA), uncertainty increases errors in alerts of separation loss. Statistical methods that are based on analytical assumptions can provide biased estimates of uncertainties. More accurate analysis can be achieved by using Bayesian Model Averaging, which provides estimates of the posterior probability distribution of a prediction. We propose a new approach to estimate the prediction uncertainty, which is based on observations that the uncertainty can be quantified by variance of predicted outcomes. In our approach, predictions for which variances of posterior probabilities are above a given threshold are assigned to be uncertain. To verify our approach we calculate a probability of alert based on the extrapolation of closest point of approach. Using Heathrow airport flight data we found that alerts are often generated under different conditions, variations in which lead to alert detection errors. Achieving 82.1% accuracy of modelling the STCA system, which is a necessary condition for evaluating the uncertainty in prediction, we found that the proposed method is capable of reducing the uncertain component. Comparison with a bootstrap aggregation method has demonstrated a significant reduction of uncertainty in predictions. Realistic estimates of uncertainties will open up new approaches to improving the performance of alert systems

    Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition

    Get PDF
    Noise, corruptions and variations in face images can seriously hurt the performance of face recognition systems. To make such systems robust, multiclass neuralnetwork classifiers capable of learning from noisy data have been suggested. However on large face data sets such systems cannot provide the robustness at a high level. In this paper we explore a pairwise neural-network system as an alternative approach to improving the robustness of face recognition. In our experiments this approach is shown to outperform the multiclass neural-network system in terms of the predictive accuracy on the face images corrupted by noise

    Adaptive Bayesian learning for making risk-aware decisions: a case of trauma survival prediction

    Get PDF
    Decision tree (DT) models provide a transparent approach to prediction of patient’s outcomes within a probabilistic framework. Averaging over DT models under certain conditions can deliver reliable estimates of predictive posterior probability distributions, which is of critical importance in the case of predicting an individual patient’s outcome. Reliable estimations of the distribution can be achieved within the Bayesian framework using Markov chain Monte Carlo (MCMC) and its Reversible Jump extension enabling DT models to grow to a reasonable size. Existing MCMC strategies however have limited ability to control DT structures and tend to sample overgrown DT models, making unreasonably small partitions, thus deteriorating the uncertainty calibration. This happens because the MCMC explores a DT model parameter space within a limited knowledge of the distribution of data partitions. We propose a new adaptive strategy which overcomes this limitation, and show that in the case of predicting trauma outcomes the number of data partitions can be significantly reduced, so that the unnecessary uncertainty of estimating the predictive posterior density is avoided. The proposed and existing strategies are compared in terms of entropy which, being calculated for predicted posterior distributions, represents the uncertainty in decisions. In this framework, the proposed method has outperformed the existing sampling strategies, so that the unnecessary uncertainty in decisions is efficiently avoided.gold oa via Elsevier agreemen

    Feature extraction with GMDH-type neural networks for EEG-based person identification

    Get PDF
    The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique “brain print”, which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant (p<0.01) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification
    corecore