159 research outputs found

    MolAxis: a server for identification of channels in macromolecules

    Get PDF
    MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ‘bottleneck’ are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis

    MolAxis: a server for identification of channels in macromolecules

    Get PDF
    MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ‘bottleneck’ are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis

    The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria

    Get PDF
    AbstractOwing to the release of 13 largely or totally sequenced cyanobacterial genomes (see http://www.kazusa.or.jp/cyano and www.jgi.doe.gov/), it is now possible to critically assess and compare the most neglected aspect of cyanobacterial physiology, i.e., cyanobacterial respiration, also on the grounds of pure molecular biology (gene sequences). While there is little doubt that cyanobacteria (blue-green algae) do form the largest, most diversified and in both evolutionary and ecological respects most significant group of (micro)organisms on our earth, and that what renders our blue planet earth to what it is, viz. the O2-containing atmosphere, dates back to the oxygenic photosynthetic activity of primordial cyanobacteria about 3.2×109 years ago, there is still an amazing lack of knowledge on the second half of bioenergetic oxygen metabolism in cyanobacteria, on (aerobic) respiration. Thus, the purpose of this review is threefold: (1) to point out the unprecedented role of the cyanobacteria for maintaining the delicate steady state of our terrestrial biosphere and atmosphere through a major contribution to the poising of oxygenic photosynthesis against aerobic respiration (“the global biological oxygen cycle”); (2) to briefly highlight the membrane-bound electron-transport assemblies of respiration and photosynthesis in the unique two-membrane system of cyanobacteria (comprising cytoplasmic membrane and intracytoplasmic or thylakoid membranes, without obvious anastomoses between them); and (3) to critically compare the (deduced) amino acid sequences of the multitude of hypothetical terminal oxidases in the nine fully sequenced cyanobacterial species plus four additional species where at least the terminal oxidases were sequenced. These will then be compared with sequences of other proton-pumping haem–copper oxidases, with special emphasis on possible mechanisms of electron and proton transfer

    Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii

    Get PDF
    A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3′4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways

    Fairer Kryptomarkt in der EU - die MiCA

    No full text
    In Zeiten der Innovation erfreuen sich Kryptowerte immer größer werdender Beliebtheit. Der Handel mit Kryptowährungen ist genauso aufregend wie riskant. Ein hochspekulativer Markt macht einen harmonisierenden Rechtsrahmen notwendig. Auf EU-Ebene soll dabei die Verordnung über Märkte für Kryptowerte (MiCA-VO) Abhilfe schaffen. Diese Arbeit beschäftigt sich mit dem Regelungsinhalt der EU-Verordnung und wirft auch einen Blick auf die Rechtslage in Österreich, wobei insbesondere das Bundesgesetz über das Wirksamwerden der MiCA-VO näher beleuchtet wird.eingereicht von Yvonne Christin JakopitschDiplomarbeit Johannes Kepler Universität Linz 202

    Teaching equations in content and language integrated learning

    No full text
    Stefanie JakoptischDiplomarbeit Alpen-Adria-Universit\ue4t Klagenfurt 201
    corecore