16 research outputs found

    Evaluating the effect of formulation on the uptake of a ZIKA subunit vaccine candidate by antigen-presenting cells

    Get PDF
    A major issue with vaccination for Zika, Dengue and other flaviviruses is the potential for antibody-dependent enhancement (ADE) of disease, caused by the generation or boosting of infection-enhancing antibodies. To address this concern, a subunit vaccine is being developed against the Zika virus using a modified version of the envelope protein as the antigen which has been modified with glycan residues to mask the fusion loop region of the protein (Figure 1), which is a cross-reactive and immunodominant site strongly implicated in the generation of antibodies capable of ADE. With this subunit vaccine approach, there is a need to formulate with an appropriate adjuvant to enhance the immunogenicity of the modified envelope protein. In this study we have evaluated a range of adjuvants using flow cytometry and fluorescence microscopy and have determined the relative uptake by human Antigen-presenting cells (APCs). Various combinations of clinically acceptable adjuvant materials: Alhydrogel®, 3D-(6-acyl) PHADTM (a synthetic analogue of MPL) and QS21, were tested using liposomal formulations. In addition, the modified Zika envelope protein was compared to that of wild type Zika antigen, similarly formulated. Please click Additional Files below to see the full abstract

    Interplay between Basic Residues of Hepatitis C Virus Glycoprotein E2 with Vi ral Receptors Neutralizing Antibodies and Lipoproteins.

    Get PDF
    Positively-charged amino acids are located at specific positions in the envelope glycoprotein E2 of the hepatitis C virus (HCV): two histidines (H) and four arginines (R) in two conserved WHY and one RGERCDLEDRDR motifs, respectively. Additionally, the E2 hypervariable region 1 (HVR1) is rich in basic amino acids. To investigate the role(s) of these residues in HCV entry, we subjected to comparative infection and sedimentation analysis cell culture-produced (HCVcc, genotype 2a) wild type virus, a panel of alanine single-site mutants and a HVR1-deletion variant. Initially, we analyzed the effects of these mutations on E2-heparan sulfate (HS) interactions. The positive milieu of the HVR1, formulated by its basic amino acids (key residues the conserved H386 and R408), and the two highly conserved basic residues H488 and R648 contributed to E2-HS interactions. Mutations in these residues did not alter the HCVcc-CD81 entry, but they modified the HCVcc-scavenger receptor class B type I (SR-BI) dependent entry and the neutralization by anti-E2 or patients IgG. Finally, separation by density gradients revealed that mutant viruses abolished partially or completely the infectivity of low density particles, which are believed to be associated with lipoproteins. This study shows that there exists a complex interplay between the basic amino acids located in HVR1 and other conserved E2 motifs with the HS, the SR-BI, and neutralizing antibodies and suggests that HCV-associated lipoproteins are implicated in these interactions

    Cell Culture Replication of a Genotype 1b Hepatitis C Virus Isolate Cloned from a Patient Who Underwent Liver Transplantation

    Get PDF
    The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV

    Cell culture replication of a genotype 1b hepatitis C virus isolate cloned from a patient who underwent liver transplantation

    No full text
    The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV

    Interplay between Basic Residues of Hepatitis C Virus Glycoprotein E2 with Vi ral Receptors Neutralizing Antibodies and Lipoproteins.

    No full text
    Positively-charged amino acids are located at specific positions in the envelope glycoprotein E2 of the hepatitis C virus (HCV): two histidines (H) and four arginines (R) in two conserved WHY and one RGERCDLEDRDR motifs, respectively. Additionally, the E2 hypervariable region 1 (HVR1) is rich in basic amino acids. To investigate the role(s) of these residues in HCV entry, we subjected to comparative infection and sedimentation analysis cell culture-produced (HCVcc, genotype 2a) wild type virus, a panel of alanine single-site mutants and a HVR1-deletion variant. Initially, we analyzed the effects of these mutations on E2-heparan sulfate (HS) interactions. The positive milieu of the HVR1, formulated by its basic amino acids (key residues the conserved H386 and R408), and the two highly conserved basic residues H488 and R648 contributed to E2-HS interactions. Mutations in these residues did not alter the HCVcc-CD81 entry, but they modified the HCVcc-scavenger receptor class B type I (SR-BI) dependent entry and the neutralization by anti-E2 or patients IgG. Finally, separation by density gradients revealed that mutant viruses abolished partially or completely the infectivity of low density particles, which are believed to be associated with lipoproteins. This study shows that there exists a complex interplay between the basic amino acids located in HVR1 and other conserved E2 motifs with the HS, the SR-BI, and neutralizing antibodies and suggests that HCV-associated lipoproteins are implicated in these interactions

    Dose-dependent inhibition of mutantś entry by anti-CD81 antibodies.

    No full text
    <p>Huh-7.5 cells were infected with Luc-Jc1 WT or with the indicated E2 mutant viruses as follows: viruses were added directly to the cells in the presence of anti-CD81 antibodies (clone JS81 or 1D6, A & B or C & D, respectively). <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052651#s3" target="_blank">Results</a> are drawn from a representative experiment of three independent experiments. All points represent the mean of duplicate infections measured in duplicate (n = 4, ± SD).</p

    Interplay between Basic Residues of Hepatitis C Virus Glycoprotein E2 with Viral Receptors, Neutralizing Antibodies and Lipoproteins

    Get PDF
    <div><p>Positively-charged amino acids are located at specific positions in the envelope glycoprotein E2 of the hepatitis C virus (HCV): two histidines (H) and four arginines (R) in two conserved WHY and one RGERCDLEDRDR motifs, respectively. Additionally, the E2 hypervariable region 1 (HVR1) is rich in basic amino acids. To investigate the role(s) of these residues in HCV entry, we subjected to comparative infection and sedimentation analysis cell culture-produced (HCVcc, genotype 2a) wild type virus, a panel of alanine single-site mutants and a HVR1-deletion variant. Initially, we analyzed the effects of these mutations on E2-heparan sulfate (HS) interactions. The positive milieu of the HVR1, formulated by its basic amino acids (key residues the conserved H<sup>386</sup> and R<sup>408</sup>), and the two highly conserved basic residues H<sup>488</sup> and R<sup>648</sup> contributed to E2-HS interactions. Mutations in these residues did not alter the HCVcc-CD81 entry, but they modified the HCVcc-scavenger receptor class B type I (SR-BI) dependent entry and the neutralization by anti-E2 or patients IgG. Finally, separation by density gradients revealed that mutant viruses abolished partially or completely the infectivity of low density particles, which are believed to be associated with lipoproteins. This study shows that there exists a complex interplay between the basic amino acids located in HVR1 and other conserved E2 motifs with the HS, the SR-BI, and neutralizing antibodies and suggests that HCV-associated lipoproteins are implicated in these interactions.</p> </div

    Buoyant density infectivity and RNA of WT and mutant viruses.

    No full text
    <p>The indicated viruses were resolved using an iodixanol step gradient. For each fraction HCV infectivity in Huh-7.5 cells and RNA (RT-qPCR) were determined. Values are plotted against the density of the respective fraction. The infectivity is expressed as a percentage of the total infectivity obtained from all fractions. All points represent the mean of duplicate infections measured in duplicate (n = 4, ± SD). <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052651#s3" target="_blank">Results</a> are drawn from a representative experiment of two independent experiments.</p
    corecore