207 research outputs found
OSSOS. II. A sharp transition in the absolute magnitude distribution of the Kuiper Belt's scattering population
We measure the absolute magnitude, H, distribution, dN(H) ∝ 10 αH , of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around H g ~ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada–France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4–8.3) × 105 for H r < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets
Thin films of unsubstituted and fluorinated palladium phthalocyanines: structure and sensor response toward ammonia and hydrogen
In the present work, we study and compare the structure and sensing properties of thin films of unsubstituted palladium phthalocyanine (PdPc) and hexadecafluorosubstituted palladium phthalocyanine (PdPcF16). Thin films of PdPc and PdPcF16 were obtained by the method of organic molecular beam deposition and their structure was studied using UV-visible spectroscopy, X-ray diffraction and atomic force microscopy techniques. The electrical sensor response of PdPc films toward ammonia and hydrogen was investigated and compared with that of PdPcF16 films. The nature of interaction between the phthalocyanines films and some gaseous analyte molecules has been clarified using Quantum chemical (DFT) calculations
Identification of evolutionarily conserved exons as regulated targets for the splicing activator Tra2β in development
Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10 fl/fl; Nestin-Cre tg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein. © 2011 Grellscheid et al
OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object
We report the discovery of the minor planet 2013 SY, on an
exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au,
2013 SY's orbit has a semi-major axis of au, the largest
known for a high-perihelion trans-Neptunian object (TNO), well beyond those of
(90377) Sedna and 2012 VP. Yet, with an aphelion of au,
2013 SY's orbit is interior to the region influenced by Galactic tides.
Such TNOs are not thought to be produced in the current known planetary
architecture of the Solar System, and they have informed the recent debate on
the existence of a distant giant planet. Photometry from the
Canada-France-Hawaii Telescope, Gemini North and Subaru indicate 2013 SY
is km in diameter and moderately red in colour, similar to other
dynamically excited TNOs. Our dynamical simulations show that Neptune's weak
influence during 2013 SY's perihelia encounters drives diffusion in its
semi-major axis of hundreds of astronomical units over 4 Gyr. The overall
symmetry of random walks in semi-major axis allow diffusion to populate 2013
SY's orbital parameter space from the 1000-2000 au inner fringe of the
Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45
to 49 au and semi-major axes beyond 250 au, providing a formation mechanism
that implies an extended population, gently cycling into and returning from the
inner fringe of the Oort cloud.Comment: First reviewer report comments incorporated. Comments welcom
OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9 : 2 RESONANCE WITH NEPTUNE
We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e = 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r = 0.59 +/- 0.11 and absolute magnitude H-r = 3.6 +/- 0.1; for an assumed albedo of p(V) = 12%, the object has a diameter of similar to 670. km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9: 2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identified in this resonance. On hundred-megayear. timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9: 2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk. and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.Peer reviewe
Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer
BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.United States. Dept. of Defense (Grant W81-XWH-13-1-0323)National Cancer Institute (U.S.) (Cancer Center Support Grant P30-CA14051
Follow-up photometry of TrES-3
We present new observations of the transiting system TrES-3 obtained from
2009 to 2011 at several observatories. The orbital parameters of the system
were re- determined and a new linear ephemeris was calculated. The best quality
light curve was used for light curve analysis, an other datasets were used to
determine mid-transit times, Tc, and study transit time variation (TTV). For
planet parameter determination we used two independent codes and finally, we
concluded that our parameters are in agreement with previous studies. Based on
our observations, we determined 14 mid-transit times. Together with published
Tc we found that the timing residuals showed no significant deviation from the
linear ephemeris. We concluded that a periodic TTV signal with an amplitude
greater than 1 minute over a 4-year time span seems to be unlikely. Our
analysis of an upper mass limit allows us to exclude an additional Earth-mass
planet close to inner 3:1, 2:1, and 5:3 and outer 3:5, 1:2, and 1:3 mean-motion
resonances. Using the long-term integration and applying the method of maximum
eccentricity, the region from 0.015 au to 0.05 au was found unstable and the
region beyond the 0.05 au was found to have a chaotic behaviour and its
depletion increases with increasing values of the initial eccentricity as well
as inclination.Comment: Accepted to MNRA
The Outer Solar System Origins Survey : I. Design and First-Quarter Discoveries
We report the discovery, tracking, and detection circumstances for 85 trans-Neptunian objects (TNOs) from the first 42 deg(2) of the Outer Solar System Origins Survey. This ongoing r-band solar system survey uses the 0.9 deg(2) field of view MegaPrime camera on the 3.6m Canada-France-Hawaii Telescope. Our orbital elements for these TNOs are precise to a fractional semimajor axis uncertaintyPeer reviewe
A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor
Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced
Lossy neural compression for geospatial analytics: a review
Over the past decades, there has been an explosion in the amount of available Earth observation (EO) data. The unprecedented coverage of Earth’s surface and atmosphere by satellite imagery has resulted in large volumes of data that must be transmitted to ground stations, stored in data centers, and distributed to end users. Modern Earth system models (ESMs) face similar challenges, operating at high spatial and temporal resolutions, producing petabytes of data per simulated day. Data compression has gained relevance over the past decade, with neural compression (NC) emerging from deep learning and information theory, making EO data and ESM outputs ideal candidates because of their abundance of unlabeled data.
In this review, we outline recent developments in NC applied to geospatial data. We introduce the fundamental concepts of NC, including seminal works in its traditional applications to image and video compression domains with a focus on lossy compression. We discuss the unique characteristics of EO and ESM data, contrasting them with “natural images,” and we explain the additional challenges and opportunities they present. Additionally, we review current applications of NC across various EO modalities and explore the limited efforts in ESM compression to date. The advent of self-supervised learning (SSL) and foundation models (FMs) has advanced methods to efficiently distill representations from vast amounts of unlabeled data. We connect these developments to NC for EO, highlighting the similarities between the two fields and elaborate on the potential of transferring compressed feature representations for machine-to-machine communication. Based on insights drawn from this review, we devise future directions relevant to applications in EO and ESMs
- …
