3,369 research outputs found
Experimental study of surface pressures induced on a flat plate and a body of revolution by various dual jet configurations
The effect of the angle of a jet to a crossflow, the performance of dual jet configurations, and a jet injected from a body of revolution as opposed to a flat plate were investigated during experiments conducted in the 7x10 tunnel at NASA Ames at Velocities from 14.5 m/sec to 35.8 m/sec (47.6 to 117.4 ft/sec.). Pressure distributions are presented for single and dual jets over a range of velocity ratios from 2 to 10, spacings from 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees. For the body of revolution tests, the ratio of the jet to body diameters was set as large (1/2) in order to be more representative of V/STOL aircraft applications. Flat plate tests involved dual jets both aligned and in side by side configurations. The effects of the various parameters and the differences between the axisymmetric and planar body geometrics on the nature, size, shape, and strength of the interaction regions on the body surfaces are shown. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets
Rearward-facing steps in laminar supersonic flows with and without suction
An experimental investigation of heat-transfer and pressure distributions within regions of laminar separated flows produced by two-dimensional rearward-facing steps has been carried out at freestream Mach numbers of around 4 in the range of step height-to-boundary layer thickness varying from 0.1 to 2.4. With no suction from the separated area, the ratio of the maximum post-step heat transfer to the attached-flow values was less than unity. The maximum heating-rate region was located far downstream of the reattachment plate stagnation point. Mass suction from the separated area increased the local heating rates, this effect was however relatively weak for purely laminar flow conditions and the competing effect of the step height clearly predominated. At step heights comparable with boundary-layer thickness, even removing the entire approaching boundary layer was not sufficient to raise the post-step heating rates above the flat-plate values
Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction
Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step
Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind
An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets
Soliton X-junctions with controllable transmission
We propose new planar X-junctions and multi-port devices written by spatial
solitons, which are composed of two (or more) nonlinearly coupled components in
Kerr-type media. Such devices have no radiation losses at a given wavelength.
We demonstrate that, for the same relative angle between the channels of the
X-junctions, one can vary the transmission coefficients into the output
channels by adjusting the polarizations of multi-component solitons. We
determine analytically the transmission properties and suggest two types of
experimental embodiments of the proposed device.Comment: 3 pages, 2 figure
Particle, heat, and sheath power transmission factor profiles during ELM suppression experiments on DIII-D
Inviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D
stochastic Navier Stokes equations when the viscosity converges to 0 and the
noise intensity is multiplied by the square root of the viscosity. Unlike
previous results on LDP for hydrodynamical models, the weak convergence is
proven by tightness properties of the distribution of the solution in
appropriate functional spaces
The aerobraking space transfer vehicle
With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed
Asymptotics of the solutions of the stochastic lattice wave equation
We consider the long time limit theorems for the solutions of a discrete wave
equation with a weak stochastic forcing. The multiplicative noise conserves the
energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck
equation for the limit wave function that holds both for square integrable and
statistically homogeneous initial data. The limit is understood in the
point-wise sense in the former case, and in the weak sense in the latter. On
the other hand, the weak limit for square integrable initial data is
deterministic
- …
