1,018 research outputs found

    Micro–Raman Spectroscopy of Diamonds from JaH 054 and Sahara 98505 Ureilites, Statistic Research

    Get PDF
    In this paper Raman spectra of diamonds from two different ureilites, JaH 054 and Sahara 98505, were measured. Obtained results for both ureilites showed the Raman shift ranged between 1321 cm -1 and 1336 cm -1 for JaH 054 and between 1329 cm -1 and 1336 cm -1 for Sahara 98505. FWHM parameter (full width at half maximum) varied also in wide range especially for Sahara 98505. Raman imaging was done for JaH 054 sample and diamonds of different Raman shifts (1321 cm-1, 1328 cm-1, 1330 cm-1) were found in few tens (im sized area of carbon vein. Raman peaks of ureilitic diamonds were compared with literature data of laboratory diamonds produced under high pressure, under low pressure with MW PACVD method and with other ureilites. Presented research showed that even in highly shocked ureilites Raman shift versus FWHM parameter plots are similar with CVD diamonds for ureilites. However, the origin of diamonds in ureilites is not explained based on the obtained results, close coexistence of different diamonds in investigated ureilites suggests that the mechanism of diamond creation in meteorites was very complex and could be multi-step process

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    iTriplet, a rule-based nucleic acid sequence motif finder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides) motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing.</p> <p>Results</p> <p>We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay.</p> <p>Conclusion</p> <p>iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.</p

    Znaczenie kliniczne migotania przedsionków prowokowanego podczas stymulacji przezprzełykowej

    Get PDF
    Wstęp: U części pacjentów bez udokumentowanych spontanicznych zaburzeń rytmu w trakcie wykonywania przezprzełykowej stymulacji przedsionków (TAS, transesophageal atrial stimulation) można sprowokować migotanie przedsionków (AF, atrial fibrillation). Celem badania było ustalenie, czy pacjenci ci różnią się pod względem wybranych parametrów od grupy, w której nie sprowokowano AF. Materiał i metody: Badanie objęło 68 chorych, których podzielono na 2 grupy: I - ze sprowokowanym AF i II - w której arytmia nie wystąpiła. U pacjentów wykonano TAS, standardowe zapisy EKG, rejestrację EKG metodą Holtera oraz badanie echokardiograficzne. Wyniki: Wyniki wskazują na znamienne różnice automatyzmu węzła zatokowego, przewodzenia zatokowo-przedsionkowego i śródprzedsionkowego, czasu refrakcji lewego przedsionka, maksymalnej i średniej częstości rytmu zatokowego, częstości ekstrasystolii nadkomorowych oraz wymiaru i wskaźnika lewego przedsionka. Pozostałe parametry nie wykazały różnic istotnych statystycznie. Wnioski: Migotanie przedsionków prowokowane podczas TAS identyfikuje pacjentów z zaburzeniami automatyzmu węzła zatokowego, upośledzonym przewodzeniem zatokowo-przedsionkowym i przewodzeniem śródprzedsionkowym, a także charakteryzuje chorych z długim okresem refrakcji lewego przedsionka. Pacjenci, u których sprowokowano AF mają znamiennie wyższą maksymalną i średnią częstość rytmu zatokowego, a także częściej występuje u nich ekstrasystolia nadkomorowa. Chorzy ci różnią się od grupy kontrolnej większym wymiarem lewego przedsionka i częstszym występowaniem w EKG zaburzeń depolaryzacji przedsionków, więc należy ich systematycznie kontrolować pod kątem występowania napadów AF w przyszłości

    Evolutionary tradeoffs in cellular composition across diverse bacteria

    Get PDF
    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components

    Structural studies of T4S systems by electron microscopy

    Get PDF
    Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies

    Main results of the first experimental campaign in the stellarator W7-X

    Get PDF
    A summary of the first operational phase (OP1.1) at the stellarator W7-X is given. The operational setup of heating and diagnostics as well the results of experiments are briefly described. Plasma parameters and confinement are better than expected: Te > 8 keV and Ti > 2 keV at ne ≈ 3×1019 m-3 yielding β0 ≈ 2.5 %. The results for ECR heating with X2-mode as well the ECCD are in good agreement with the theory predictions. The heating scenario with the O2-mode alone was successfully first time performed. Stellarator specific regime of core “electron root” confinement was obtained

    Study of ultrathin Pt/Co/Pt trilayers modified by nanosecond XUV pulses from laser-driven plasma source

    Get PDF
    We have studied the structural mechanisms responsible for the magnetic reorientation between in-plane and out-of-plane magnetization in the (25 nm Pt)/(3 and 10 nm Co)/(3 nm Pt) trilayer systems irradiated with nanosecond XUV pulses generated with laser-driven gas-puff target plasma source of a narrow continuous spectrum peaked at wavelength of 11 nm. The thickness of individual layers, their density, chemical composition and irradiation-induced lateral strain were deduced from symmetric and asymmetric X-ray diffraction (XRD) patterns, grazing-incidence X-ray reflectometry (GIXR), grazing incidence X-ray fluorescence (GIXRF), extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) measurements. In the as grown samples we found, that the Pt buffer layers are relaxed and that the layer interfaces are sharp. As a result of a quasi-uniform irradiation of the samples, the XRD, EXAFS, GIXR and GIXRF data reveal the formation of two distinct layers composed of Pt1-xCox alloys with different Co concentrations, dependent on the thickness of the as grown magnetic Co film but with similar ∼1% lateral tensile residual strain. For smaller exposure dose (lower number of accumulated pulses) only partial interdiffusion at the interfaces takes place with the formation of a tri-layer composed of Co-Pt alloy sandwiched between thinned Pt layers, as revealed by TEM. The structural modifications are accompanied by magnetization changes, evidenced by means of magneto-optical microscopy. The difference in magnetic properties of the irradiated samples can be related to their modification in Pt1-xCox alloy composition, as the other parameters (lateral strain and alloy thickness) remain almost unchanged. The out-of-plane magnetization observed for the sample with initially 3 nm Co layer can be due to a significant reduction of demagnetization factor resulting from a lower Co concentration
    corecore