2,554 research outputs found
Type 2 diabetes: a cohort study of treatment, ethnic and social group influences on glycated haemoglobin
OBJECTIVES: To assess whether in people with poorly controlled type 2 diabetes (HbA1c>7.5%) improvement in HbA1c varies by ethnic and social group. DESIGN: Prospective 2-year cohort of type 2 diabetes treated in general practice. SETTING AND PARTICIPANTS: All patients with type 2 diabetes in 100 of the 101 general practices in two London boroughs. The sample consisted of an ethnically diverse group with uncontrolled type 2 diabetes aged 37–71 years in 2007 and with HbA1c recording in 2008–2009. OUTCOME MEASURE: Change from baseline HbA1c in 2007 and achievement of HbA1c control in 2008 and 2009 were estimated for each ethnic, social and treatment group using multilevel modelling. RESULTS: The sample consisted of 6104 people; 18% were white, 63% south Asian, 16% black African/Caribbean and 3% other ethnic groups. HbA1c was lower after 1 and 2 years in all ethnic groups but south Asian people received significantly less benefit from each diabetes treatment. After adjustment, south Asian people were found to have 0.14% less reduction in HbA1c compared to white people (95% CI 0.04% to 0.24%) and white people were 1.6 (95% CI 1.2 to 2.0) times more likely to achieve HbA1c controlled to 7.5% or less relative to south Asian people. HbA1c reduction and control in black African/Caribbean and white people did not differ significantly. There was no evidence that social deprivation influenced HbA1c reduction or control in this cohort. CONCLUSIONS: In all treatment groups, south Asian people with poorly controlled diabetes are less likely to achieve controlled HbA1c, with less reduction in mean HbA1c than white or black African/Caribbean people
AIDS-Related Mycoses: Current Progress in the Field and Future Priorities.
Opportunistic fungal infections continue to take an unacceptably heavy toll on the most disadvantaged living with HIV-AIDS, and are a major driver for HIV-related deaths. At the second EMBO Workshop on AIDS-Related Mycoses, clinicians and scientists from around the world reported current progress and key priorities for improving outcomes from HIV-related mycoses
The secret world of shrimps: polarisation vision at its best
Animal vision spans a great range of complexity, with systems evolving to
detect variations in optical intensity, distribution, colour, and polarisation.
Polarisation vision systems studied to date detect one to four channels of
linear polarisation, combining them in opponent pairs to provide
intensity-independent operation. Circular polarisation vision has never been
seen, and is widely believed to play no part in animal vision. Polarisation is
fully measured via Stokes' parameters--obtained by combined linear and circular
polarisation measurements. Optimal polarisation vision is the ability to see
Stokes' parameters: here we show that the crustacean \emph{Gonodactylus
smithii} measures the exact components required. This vision provides optimal
contrast-enhancement, and precise determination of polarisation with no
confusion-states or neutral-points--significant advantages. We emphasise that
linear and circular polarisation vision are not different modalities--both are
necessary for optimal polarisation vision, regardless of the presence of
strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table
Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms
This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time
A habituation account of change detection in same/different judgments
We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation
Novel insights into host-fungal pathogen interactions derived from live-cell imaging
Acknowledgments The authors acknowledge funding from the Wellcome Trust (080088, 086827, 075470 and 099215) including a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377 and FP7-2007–2013 grant agreement HEALTH-F2-2010-260338–ALLFUN to NARG.Peer reviewedPublisher PD
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Recommended from our members
Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity
Background
Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.
Results
We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes.
Conclusions
Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
- …
