219 research outputs found

    Lithium-Ion Batteries for Aerospace Applications

    Get PDF
    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Possible Pathway(s) of Metyrapone Egress from the Active Site of Cytochrome P450 3A4: A Molecular Dynamics Simulation

    Get PDF
    ABSTRACT: To identify a possible pathway(s) for metyrapone egress from the active site of P450 3A4, a 5-ns conventional molecular dynamics simulation followed by steered molecular dynamics simulations was performed on the complex with metyrapone. The steered molecular dynamics simulations showed that metyrapone egress via channel 1, threading through the B-C loop, only required a relatively small rupture force and small displacement of residues, whereas egress via the third channel, between helix I and helices F and G, required a relatively large force and perturbation of helices I, B, and C. The conventional dynamics simulation indicated that channel 2, located between the ␤1 sheet, B-B loop, and F-G region, is closed because of the movement of residues in the mouth of this channel. The findings suggest that channel 1 can be used for metyrapone egress, whereas both channel 2 and channel 3 have a low probability of serving as an exit channel for metyrapone. In addition, residues F108 and I120 appear to act as two gatekeepers to prevent the inhibitor from leaving the active site. These results are in agreement with previous site-directed mutagenesis experiments

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism s

    Get PDF
    ABSTRACT Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structurefunction relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarinswith a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (k cat /K M ) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl) coumarin (7-EFC), followed by 7-methoxy-4-(trifluoromethyl) coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-p interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships

    So many roads traveled: A career in science and administration

    No full text

    THE 2010 BERNARD B. BRODIE AWARD LECTURE Structure and Function of Cytochromes P450 2B: From Mechanism-Based Inactivators to X-Ray Crystal Structures and Back

    No full text
    ABSTRACT: This article reviews work from the author dating back to 1978 and focuses on the structural basis of cytochrome P450 (P450) function using available contemporary techniques. Early studies used mechanism-based inactivators that bound to the protein moiety of hepatic P450s to try to localize the active site. Subsequent studies used cDNA cloning, heterologous expression, site-directed mutagenesis, and homology modeling based on multiple bacterial P450 X-ray crystal structures to predict the active sites of CYP2B enzymes with considerable accuracy. Breakthroughs in engineering and expression of mammalian P450s enabled us to determine our first X-ray crystal structure of ligand-free rabbit CYP2B4. To date, we have solved 11 CYP2B4 and three human CYP2B6 structures, which represent four significantly different conformations. The plasticity of CYP2B4 has been confirmed by deuterium exchange mass spectrometry and is substantiated by molecular dynamics simulations. In addition to major movement of secondary structure elements, more subtle reorientation of active site side chains, especially Phe206, Phe297, and Glu301, contributes to the ability of CYP2B enzymes to bind various ligands. Isothermal titration calorimetry has proven to be a useful tool for studying the thermodynamics of ligand binding to CYP2B4 and CYP2B6, and NMR has enabled study of ligand binding orientation in solution as an adjunct to X-ray crystallography. A major challenge remains to harness the power of the various approaches to facilitate prediction of CYP2B specificity and inhibition

    So many roads traveled: A career in science and administration

    Full text link
    I have traveled many roads during my career. After spending my first 19 years in Los Angeles, I became somewhat of an academic nomad, studying and/or working in six universities in the United States and three in Sweden. In chronological order, I have a B.A. in Scandinavian languages and literature from UCLA, a Ph.D. in biochemistry from Uppsala University, and an M.S. in toxicology from the Karolinska Institute. I have been in schools of natural science, pharmacy, and medicine and have worked in multiple basic science departments and one clinical department. I have served as a research-track and tenured faculty member, department chair, associate dean, and dean. My research has spanned toxinology, biochemistry, toxicology, and pharmacology. Through all the moves, I have gained much and lost some. For the past 40 years, my interest has been cytochrome P450 structure-function and structure-activity relationships. My lab has focused on CYP2B enzymes using X-ray crystallography, site-directed mutagenesis, deuterium-exchange MS, isothermal titration calorimetry, and computational methods in conjunction with a variety of functional assays. This comprehensive approach has enabled detailed understanding of the structural basis of the remarkable substrate promiscuity of CYP2B enzymes. We also have investigated the mechanisms of CYP3A4 allostery using biophysical and advanced spectroscopic techniques, and discovered a pivotal role of P450-P450 interactions and of multiple-ligand binding. A major goal of this article is to provide lessons that may be useful to scientists in the early and middle stages of their careers and those more senior scientists contemplating an administrative move.</jats:p
    corecore