1,572 research outputs found

    B Physics at D0

    Full text link
    The Fermilab Tevatron (p pbar), operating at sqrt(s)=1.96 TeV, is a rich source of B hadrons. The large acceptance in terms of rapidity and transverse momentum of the charged particle tracking system and the muon system make the upgraded Run II D0 detector an excellent tool for B physics. In this article, we report on selected physics results based on the first 250 pb^-1 of Run II data. This includes results on the X(3872) state, semileptonic B decays, B hadron lifetimes, flavour oscillations, and the rare decay B_s -> mu^+ mu^-.Comment: 8 pages, 8 figures. To appear in the proceedings of the 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 Mar 200

    Frequency-Dependent Selection at Rough Expanding Fronts

    Get PDF
    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.Comment: 11 pages, 10 figure

    Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method

    Full text link
    Recently, a novel lookup table based decoding method for binary low-density parity-check codes has attracted considerable attention. In this approach, mutual-information maximizing lookup tables replace the conventional operations of the variable nodes and the check nodes in message passing decoding. Moreover, the exchanged messages are represented by integers with very small bit width. A machine learning framework termed the information bottleneck method is used to design the corresponding lookup tables. In this paper, we extend this decoding principle from binary to non-binary codes. This is not a straightforward extension, but requires a more sophisticated lookup table design to cope with the arithmetic in higher order Galois fields. Provided bit error rate simulations show that our proposed scheme outperforms the log-max decoding algorithm and operates close to sum-product decoding.Comment: This paper has been presented at IEEE International Conference on Communications (ICC'19) in Shangha

    Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    Get PDF
    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value ath and are pinned to the wall below αth. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berli

    Taylor line swimming in microchannels and cubic lattices of obstacles

    Get PDF
    Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.DFG, GRK 1558, Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen SystemenDFG, SPP 1726, Mikroschwimmer - Von Einzelpartikelbewegung zu kollektivem Verhalte

    Collective dynamics in a monolayer of squirmers confined to a boundary by gravity

    Get PDF
    We present a hydrodynamic study of a monolayer of squirmer model microswimmers confined to a boundary by strong gravity using the simulation method of multi-particle collision dynamics. The squirmers interact with each other via their self-generated hydrodynamic flow fields and thereby form a variety of fascinating dynamic states when density and squirmer type are varied. Weak pushers, neutral squirmers, and pullers have an upright orientation. With their flow fields they push neighbors away and thereby form a hydrodynamic Wigner fluid at lower densities. Furthermore, states of fluctuating chains and trimers, of kissing, and at large densities a global cluster exist. Finally, pushers at all densities can tilt against the wall normal and their in-plane velocities align to show swarming. It turns into chaotic swarming for strong pushers at high densities. We characterize all these states quantitatively.DFG, 87159868, GRK 1558: Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen SystemenDFG, 237143019, SPP 1726: Mikroschwimmer - Von Einzelpartikelbewegung zu kollektivem VerhaltenTU Berlin, Open-Access-Mittel - 201

    Compression coil provides increased lead control in extraction procedures

    Get PDF
    Aims We investigated a new lead extraction tool (Compression Coil; One-Tie, Cook Medical) in an experimental traction force study. Methods and results On 13 pacemaker leads (Setrox JS53, Biotronik) traction force testing was performed under different configurations. The leads were assigned to three groups: (i) traction force testing without central locking stylet support (n = 5), (ii) traction force testing with the use of a locking stylet (Liberator, Cook Medical) and a proximal ligation suture (n = 4), (iii) traction force testing with the use of a locking stylet and a compression coil (n = 4). The following parameters were obtained for all groups: stress-strain curves, maximal forces, elastic modulus, post-testing lead length and lead elongation. In Groups 2 and 3 retraction of the locking stylet within the lead was measured [lead tip-locking stylet distance (LTLSD)]. Maximal forces for the three groups were: (i) 28.3 ± 0.3 N; (ii) 30.6 ± 3.0 N; (iii) 31.6 ± 2.9 N (1 vs. 2, P = 0.13; 1 vs. 3, P = 0.04; 2 vs. 3, P = 0.65). Elastic modulus was (i) 22.8 ± 0.1 MPa; (ii) 2830.8 ± 351.1 MPa; (iii) 2447.0 ± 510.5 MPa (1 vs. 2, P < 0.01; 1 vs. 3, P < 0.01; 2 vs. 3, P = 0.26). Mean LTLSD in Group 2 was 19.8 ± 3.2 cm and was 13.8 ± 1.7 cm in Group 3 (P = 0.02). The ratio of LTLSD/post-testing lead length was 0.37 ± 0.03 for Group 2 and 0.24 ± 0.03 for Group 3 (P < 0.01). Conclusion The application of a compression coil leads to an increased lead control expressed by less retraction of the locking stylet within the lead. This enables improved central support of extraction sheaths in the case of challenging extraction procedure
    corecore