38,133 research outputs found
The Thermal degradation of Bisphenol A Polycarbonate in Air
The thermal degradation of polycarbonate in air was studied as a function of mass loss using TGA/FTIR, GC/MS and LC/MS. In the main degradation region, 480–560 °C, the assigned structures of smaller molecules and linear molecules that evolved in air were very similar to those obtained from the degradation in nitrogen; the degradation of polycarbonate follows chain scission of the isopropylidene linkage, in agreement with the bond dissociation energies, and hydrolysis/alcoholysis of carbonate linkage. Compared to the degradation in nitrogen, some differences were observed primarily in the beginning stage of degradation. Oxygen may facilitate branching as well as radical formation via the formation of peroxides. These peroxides undergo further dissociations and combinations, producing aldehydes, ketones and some branched structures, mainly in the beginning stage of degradation. It is speculated that the intermediate char formed in the beginning due to branching reactions of peroxide interferes with the mass transfer through the surface of degrading polycarbonate in the main degradation. Thus, even though the mass loss begins earlier in air, a slower mass loss rate is observed
The Effects Of Triphenylphosphate and Recorcinolbis(Diphenylphosphate) on the Thermal Degradation Of Polycarbonate in Air
The thermal degradation of polycarbonate/triphenylphosphate (PC/TPP) and PC/resocinolbis(diphenylphosphate) (PC/RDP) in air has been studied using TGA/FTIR and GC/MS. In PC/phosphate blends, the phosphate stabilizes the carbonate group of polycarbonate from alcoholysis between the alcohol products of polycarbonate degradation and the carbonate linkage. Thus, the evolution of bisphenol A, which is mainly produced via hydrolysis/alcoholysis of the carbonate linkage, is significantly reduced, while, the evolution of various alkylphenols and diarylcarbonates increases. The bonds that are broken first in the thermal degradation of both the carbonate and isopropylidene linkages of polycarbonate are the weakest bonds in each, when a phosphate is present. Triphenylphosphate and resocinolbis(diphenyl-phosphate), even though they exhibit a significant difference in their volatilization temperature, appear to play a similar role in the degradation pathway of polycarbonate
A TGA/FTIR and Mass Spectral Study on the Thermal Degradation of Bisphenol A Polycarbonate
The thermal degradation of polycarbonate under nitrogen was studied using TGA/FTIR, GC/MS and LC/MS as a function of mass loss. The gases evolved during degradation were inspected by in situ FTIR and then the evolved products were collected and analysed using FTIR, GC–MS and LC–MS. The structures of the evolved products are assigned on the basis of FTIR and GC/MS results. The main thermal degradation pathways follow chain scission of the isopropylidene linkage, and hydrolysis/alcoholysis and rearrangement of carbonate linkages. In the case of chain scission, it was proposed that methyl scission of isopropylidene occurs first, according to the bond dissociation energies. The presence of carbonate structures, 1,1′-bis(4-hydroxyl phenyl) ethane and bisphenol A in significant amounts, supports the view that chain scission and hydrolysis/alcoholysis are the main degradation pathways for the formation of the evolved products
First-principles study of the switching mechanism of [2]catenane molecular electronic devices
We present a first-principles study of the coherent charge transport properties of bistable [2]catenane molecular monolayers sandwiched between Au(111) electrodes. We find that conduction channels around the Fermi level are dominated by the two highest occupied molecular orbital levels from tetrathiafulvalene (TTF) and dioxynaphthalene (DNP) and the two lowest unoccupied molecular orbital levels from tetracationic cyclophane (CBPQT(4+)), and the OFF to ON switching results from the energetic shifts of these orbitals as CBPQT(4+) moves from TTF to DNP. We show that the superposition principle can be adopted for predicting the function of the composite device
On business cycles and countercyclical policies
Since the third quarter of 2000, the U.S. economy began to experience a slowdown in its rate of growth. This slowdown serves as a reminder that the business cycle is still alive and raises the following questions: What do we know about the driving forces behind the business cycle? What should policymakers do in the face of economic fluctuations? ; The authors examine two explanations for business cycles that are well-known in academic circles: the animal spirits theory and the real business cycle theory. The former is closely connected with the Keynesian economic tradition and identifies market participants' mood swings as the key source of economic fluctuations. The second explanation is rooted in the classical economic tradition and views productivity shocks as the driving force behind economic fluctuations. The article then looks at what these theories suggest about countercyclical policies, which try to eliminate business cycle fluctuations or insulate market participants from their effects. The authors conclude that neither theory makes an unambiguous case supporting countercyclical policies. ; This conclusion may come as a surprise to government and business economists who have an ingrained belief in the benefits of such policies. It is important to remember, however, that attempts to understand business cycles and the effects and desirability of policies that may (or may not) moderate them are still at a very early stage.Business cycles ; Monetary policy ; Keynesian economics
Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: A multiscale computational study
We report a computational study of conformations and charge transport characteristics of biphenyldithiol (BPDT) monolayers in the (sqrt(3)×sqrt(3))R30° packing ratio sandwiched between Au(111) electrodes. From force-field molecular-dynamics and annealing simulations of BPDT self-assembled monolayers (SAMs) with up to 100 molecules on a Au(111) substrate, we identify an energetically favorable herringbone-type SAM packing configuration and a less-stable parallel packing configuration. Both SAMs are described by the (2sqrt(3)×sqrt(3))R30° unit cell including two molecules. With subsequent density-functional theory calculations of one unit cell of the (i) herringbone SAM with the molecular tilt angle theta[approximate]15°, (ii) herringbone SAM with theta[approximate]30°, and (iii) parallel SAM with theta[approximate]30°, we confirm that the herringbone packing configuration is more stable than the parallel one but find that the energy variation with respect to the molecule tilting within the herringbone packing is very small. Next, by capping these SAMs with the top Au(111) electrode, we prepare three molecular electronic device models and calculate their coherent charge transport properties within the matrix Green's function approach. Current–voltage (I–V) curves are then obtained via the Landauer–Büttiker formula. We find that at low-bias voltages (|V|~0.5 V), the I–V characteristics of the three models show noticeable differences due to different phenyl band structures. We thus conclude that the BPDT SAM I–V characteristics in the low-bias voltage region are mainly determined by the Si–Au interaction within the individual molecule-electrode contact, while both intramolecular conformation and intermolecular interaction can affect the BPDT SAM I–V characteristics in the high-bias voltage region
- …
