131 research outputs found

    Interactions between rates of temperature change and acclimation affects latitudinal patterns of warming tolerance

    Get PDF
    CITATION: Allen, J. L. et al. 2016. Interactions between rates of temperature change and acclimation affects latitudinal patterns of warming tolerance. Conservation Physiology, 4,(1):cow053, doi:10.1093/conphys/cow053.The original publication is available at https://academic.oup.com/conphysCritical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach.https://academic.oup.com/conphys/article/4/1/cow053/2452292Publisher's versio

    Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting

    Get PDF
    As global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals. Yet, it is at the assemblage level that interactions play out. Here, we examine whether physiological trait differences observed at the interspecific level are also applicable to assemblages. We focus on the Collembola, an important component of the soil fauna characterized by invasions globally, and five traits related to fitness: critical thermal maximum, minimum and range, desiccation resistance and egg development rate. We test the predictions that the alien component of a local assemblage has greater basal physiological tolerances or higher rates, and more pronounced phenotypic plasticity than the indigenous component. Basal critical thermal maximum, thermal tolerance range, desiccation resistance, optimum temperature for egg development, the rate of development at that optimum and the upper temperature limiting egg hatching success are all significantly higher, on average, for the alien than the indigenous components of the assemblage. Outcomes for critical thermal minimum are variable. No significant differences in phenotypic plasticity exist between the alien and indigenous components of the assemblage. These results are consistent with previous interspecific studies investigating basal thermal tolerance limits and development rates and their phenotypic plasticity, in arthropods, but are inconsistent with results from previous work on desiccation resistance. Thus, for the Collembola, the anticipated advantage of alien over indigenous species under warming and drying is likely to be manifest in local assemblages, globally

    Colonizing polar environments : thermal niche evolution in Collembola

    Get PDF
    DATA AVAILABILITY STATEMENT : Data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.4j0zpc8gb (Escribano-Álvarez et al. 2023).Please read abstract in the article.The Ministry of Science & Innovation under the call for International Joint Programming, a FPI contract, an EU-Biodiversa project ASICS granted by the South African National Research Foundation.https://onlinelibrary.wiley.com/journal/16000587hj2023Plant Production and Soil ScienceSDG-15:Life on lan

    Globally invariant metabolism but density-diversity mismatch in springtails

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.fals

    Zoofolkloristika: Prvi uvidi na putu prema novoj disciplini

    Get PDF
    The author notes that new, more complex researches of connections between animals, nature and connections to humans are needed in Slovenian and European folklore, literature and cultural studies, due to new ecological and ethical findings in the wider social and cultural environment and a changing order of the world, which has moved the focus from anthropocentrism into ecocentrism. The discussion builds upon various theoretical discourses, new concepts and multidisciplinary knowledge, to create the foundations, guidelines and directions for a new academic discipline of zoofolkloristics. Furthermore, new theoretical and analytical discourses should enable zoofolkloristics to provide an insight into changes in human attitudes to animals, in both folklore and within traditional and contemporary ritual practices, or their redefinition, and at the same time exert influence upon legal safety of non-human subjectivities.Autorica polazi od tvrdnje da su potrebna nova, kompleksnija istraživanja veza između životinja, prirode i poveznica s ljudima u slovenskoj i europskoj folkloristici, znanosti o književnosti i kulturnim studijima, zbog novih ekoloških i etičkih uvida u širu društveno-kulturnu okolinu i promjene u svijetu, koje su dovele do promjene od antropocentrizma k ekocentrizmu. U radu se na temelju različitih teorijskih diskursa, novih pojmova i multidisciplinarnog znanja stvaraju temelji, smjernice i pravci istraživanja u novoj znanstvenoj disciplini zoofolkloristike. Autorica tvrdi da bi etnologija, folkloristika i znanost o književnosti mogle imati ključnu ulogu u razvoju ekološke svijesti, znanstvenih terenskih istraživanja i kulturne ekologije te tako omogućiti prelazak iz ekologije u eshatologiju. Rad započinje opisom percepcije životinja i odnosa ljudi i životinja, gdje autorica govori o temeljnim pojmovima koji utječu na uvođenje ove nove znanstvene discipline, kao što su: životinja kao ispitanik, individualni pristup životinji, sinantropski i antropofilni pogled na čovjeka i životinju te antropomorfizam. Zatim se govori o povijesnim i suvremenim filozofsko-antropološkim diskursima o ljudskom pogledu na životinju te o teoriji specizma. Autorica razmatra predmet nove discipline te kaže da je u centru istraživanja životinja u folkloru u najširem mogućem smislu, u svim sferama narodne kulture, što se proučava iz novih gledišta, nove percepcije i recepcije; u pjesmama, pričama, bajkama, basnama, predajama, poslovicama, izrekama, zagonetkama, šalama, narodnom jeziku, kulturnim praksama, narodnom teatru, mitologiji, narodnoj medicini pa čak i u narodnoj glazbi. Nadalje, autorica daje pregled kulturnih istraživanja životinja u Europi i Sloveniji, te pokazuje da su rasprave o životinjama uglavnom objavljivane u 21. stoljeću, što bi moglo označavati da je riječ o prelasku u novu paradigmu ili čak i novu ontologiju. Autorica se bavi metodološkim i teorijskim pitanjima i pravcima u zoofolklorističkim istraživanjima koje klasificira prema kritičkom diskursu. Rad završava pregledom ciljeva zoofolkloristike, za koju tvrdi da ne bi smjela postati znanstvena disciplina koja nema aktivan utjecaj na društvenopolitički prostor u kojem koegzistiraju ljudski i ne-ljudski subjektiviteti

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.fals

    Global monitoring of soil animal communities using a common methodology.

    Get PDF
    Here we introduce the Soil BON Foodweb Team, a cross-continental collaborative network that aims to monitor soil animal communities and food webs using consistent methodology at a global scale. Soil animals support vital soil processes via soil structure modification, consumption of dead organic matter, and interactions with microbial and plant communities. Soil animal effects on ecosystem functions have been demonstrated by correlative analyses as well as in laboratory and field experiments, but these studies typically focus on selected animal groups or species at one or few sites with limited variation in environmental conditions. The lack of comprehensive harmonised large-scale soil animal community data including microfauna, mesofauna, and macrofauna, in conjunction with related soil functions, microbial communities, and vegetation, limits our understanding of biological interactions in soil systems and how these interactions affect ecosystem functioning. To provide such data, the Soil BON Foodweb Team invites researchers worldwide to use a common methodology to address six long-term goals: (1) to collect globally representative harmonised data on soil micro-, meso-, and macrofauna communities, (2) to describe key environmental drivers of soil animal communities and food webs, (3) to assess the efficiency of conservation approaches for the protection of soil animal communities, (4) to describe soil food webs and their association with soil functioning globally, (5) to establish a global research network for soil biodiversity monitoring and collaborative projects in related topics, (6) to reinforce local collaboration networks and expertise and support capacity building for soil animal research around the world. In this paper, we describe the vision of the global research network and the common sampling protocol to assess soil animal communities and advocate for the use of standard methodologies across observational and experimental soil animal studies. We will use this protocol to conduct soil animal assessments and reconstruct soil food webs at sites associated with the global soil biodiversity monitoring network, Soil BON, allowing us to assess linkages among soil biodiversity, vegetation, soil physico-chemical properties, climate, and ecosystem functions. In the present paper, we call for researchers especially from countries and ecoregions that remain underrepresented in the majority of soil biodiversity assessments to join us. Together we will be able to provide science-based evidence to support soil biodiversity conservation and functioning of terrestrial ecosystems

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p
    corecore