105 research outputs found

    Conversion of the Mycotoxin Patulin to the Less Toxic Desoxypatulinic Acid by the Biocontrol Yeast Rhodosporidium kratochvilovae Strain LS11

    Get PDF
    Se describe en este artículo el descubrimiento de la degradación de la micotoxina patulina por una levaduraThe infection of stored apples by the fungus Penicillium expansum causes the contamination of fruits and fruit-derived products with the mycotoxin patulin, which is a major issue in food safety. Fungal attack can be prevented by beneficial microorganisms, so-called biocontrol agents. Previous time-course thin layer chromatography analyses showed that the aerobic incubation of patulin with the biocontrol yeast Rhodosporidium kratochvilovae strain LS11 leads to the disappearance of the mycotoxin spot and the parallel emergence of two new spots, one of which disappears over time. In this work, we analyzed the biodegradation of patulin effected by LS11 through HPLC. The more stable of the two compounds was purified and characterized by nuclear magnetic resonance as desoxypatulinic acid, whose formation was also quantitated in patulin degradation experiments. After R. kratochvilovae LS11 had been incubated in the presence of 13C-labeled patulin, label was traced to desoxypatulinic acid, thus proving that this compound derives from the metabolization of patulin by the yeast. Desoxypatulinic acid was much less toxic than patulin to human lymphocytes and, in contrast to patulin, did not react in vitro with the thiol-bearing tripeptide glutathione. The lower toxicity of desoxypatulinic acid is proposed to be a consequence of the hydrolysis of the lactone ring and the loss of functional groups that react with thiol groups. The formation of desoxypatulinic acid from patulin represents a novel biodegradation pathway that is also a detoxification process

    IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation

    Get PDF
    The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2−/− mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2−/− mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission

    Enhancement of Biocontrol of Blue Mold with the Nutrient Analog 2-Deoxy- <scp>d</scp> -Glucose on Apples and Pears

    Full text link
    The glucose analog, 2-deoxy- d -glucose (2-DOG) enhanced biocontrol of blue mold (caused by Penicillium expansum ), the most important postharvest disease of apples and pears. 2-DOG strongly inhibited P. expansum , and of the two antagonists investigated, Pseudomonas syringae was resistant to 2-DOG at 10 mg/ml whereas Sporobolomyces roseus was susceptible. A mutant of S. roseus resistant to 2-DOG was developed. Addition of 2-DOG at 4 mg/ml allowed more than a 10-fold reduction in the concentration of the antagonists applied to fruits without diminishing control. This effect was still apparent at an inoculum of 5 × 10 4 conidia of P. expansum per ml, which greatly exceeds concentrations found under normal commercial conditions. The effect of 2-DOG on biocontrol was stronger on apples than on pears. 2-DOG had no effect on populations of the antagonists, which increased greatly in wounds on apples and pears. The reduction in the concentration of the antagonists needed for control may improve the reliability and economy of the biocontrol system and may have a significant impact on commercialization of this new technology. </jats:p

    Control of Storage Decay of Apples with<i>Sporobolomyces roseus</i>

    Full text link

    Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruits

    Full text link
    Two antagonists, the bacterium Pseudomonas syringae and the pink yeast Sporobolomyces roseus, against blue mold (caused by Penicillium expansum) on apple controlled this disease more effectively when combined at approximately equal biomass (50:50 of the same turbidity) than in individual applications. Addition of L-asparagine enhanced the biocontrol effectiveness of P. syringae but decreased that of S. roseus and had no significant effect when the antagonists were combined. Populations of both antagonists increased in apple wounds and were further stimulated by the addition of L-asparagine. The carrying capacity of wounds for P. syringae was not affected by S. roseus. Populations of P. syringae in wounds inoculated individually or in a 50:50 mixture with S. roseus reached the same level after 3 days at 22 degrees C. However, populations of S. roseus recovered after applications of the mixture were consistently lower than those recovered after individual applications. Similar effects were observed in in vitro tests in which populations of S. roseus grown in mixtures with P. syringae were consistently lower than those grown alone, while the populations of P. syringae were not affected by the presence of S. roseus. A total of 36 carbon and 35 nitrogen compounds were tested for utilization by both antagonists. Fourteen nitrogenous compounds were utilized by both P. syringae and S. roseus, and an additional nine compounds were utilized by P. syringae. S. roseus and P. syringae utilized 17 and 13 carbon sources, respectively; 9 sources were common to both antagonists. Populations of these antagonists in apple wounds appear to form a relatively stable community dominated by P. syringae.(ABSTRACT TRUNCATED AT 250 WORDS)</jats:p
    corecore