11,647 research outputs found
Pressure of Membrane between Walls
For a single membrane of stiffness kappa fluctuating between two planar walls
of distance d, we calculate analytically the proportionality constant in the
pressure law p proportional to T^2/kappa^2 d^3, in very good agreement with
results from Monte Carlo simulations.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper also at
http://www.physik.fu-berlin.de/~kleinert/kleiner_re277/preprint.htm
Multigrid Method versus Staging Algorithm for PIMC Simulations
We present a comparison of the performance of two non-local update algorithms
for path integral Monte Carlo (PIMC) simulations, the multigrid Monte Carlo
method and the staging algorithm. Looking at autocorrelation times for the
internal energy we show that both refined algorithms beat the slowing down
which is encountered for standard local update schemes in the continuum limit.
We investigate the conditions under which the staging algorithm performs
optimally and give a brief discussion of the mutual merits of the two
algorithms.Comment: 11 pp. LaTeX, 4 Postscript Figure
Critical Exponents from General Distributions of Zeroes
All of the thermodynamic information on a statistical mechanical system is
encoded in the locus and density of its partition function zeroes. Recently, a
new technique was developed which enables the extraction of the latter using
finite-size data of the type typically garnered from a computational approach.
Here that method is extended to deal with more general cases. Other critical
points of a type which appear in many models are also studied.Comment: 4 pages, 3 figure
Correlation Length From Cluster-Diameter Distribution
We report numerical estimates of correlation lengths in 2D Potts models from
the asymptotic decay of the cluster-diameter distribution. Using this
observable we are able to verify theoretical predictions for the correlation
length in the disordered phase at the transition point for , 15, and 20
with an accuracy of about . This is a considerable improvement over
previous measurements using the standard (projected) two-point function.Comment: 4 pages, PostScript, contribution to LATTICE95. See also
http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
Parallel-tempering cluster algorithm for computer simulations of critical phenomena
In finite-size scaling analyses of Monte Carlo simulations of second-order
phase transitions one often needs an extended temperature range around the
critical point. By combining the parallel tempering algorithm with cluster
updates and an adaptive routine to find the temperature window of interest, we
introduce a flexible and powerful method for systematic investigations of
critical phenomena. As a result, we gain one to two orders of magnitude in the
performance for 2D and 3D Ising models in comparison with the recently proposed
Wang-Landau recursion for cluster algorithms based on the multibondic
algorithm, which is already a great improvement over the standard
multicanonical variant.Comment: pages, 5 figures, and 2 table
Phase Transition Strength through Densities of General Distributions of Zeroes
A recently developed technique for the determination of the density of
partition function zeroes using data coming from finite-size systems is
extended to deal with cases where the zeroes are not restricted to a curve in
the complex plane and/or come in degenerate sets. The efficacy of the approach
is demonstrated by application to a number of models for which these features
are manifest and the zeroes are readily calculable.Comment: 16 pages, 12 figure
Multibondic Cluster Algorithm
Inspired by the multicanonical approach to simulations of first-order phase
transitions we propose for -state Potts models a combination of cluster
updates with reweighting of the bond configurations in the
Fortuin-Kastelein-Swendsen-Wang representation of this model. Numerical tests
for the two-dimensional models with and show that the
autocorrelation times of this algorithm grow with the system size as , where the exponent takes the optimal random walk value of
.Comment: 3 pages, uuencoded compressed postscript file, contribution to the
LATTICE'94 conferenc
Monte Carlo Study of 8-State Potts Model on 2D Random Lattices
We study the effect of quenched coordination-number disorder of random
lattices on the nature of the phase transition in the two-dimensional
eight-state Potts model, which is of first order on regular lattices. We
consider Poissonian random lattices of toroidal topology constructed according
to the Voronoi/Delaunay prescription. Monte Carlo simulations yield strong
evidence that the phase transition remains first order.Comment: 4 pages, PostScript, contribution to LATTICE95. See also
http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
- …
