205 research outputs found
The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast
Oesophageal adenocarcinoma is associated with a deregulation in the MYC/MAX/MAD network
Oesophageal adenocarcinoma, which arises from an acquired columnar lesion, Barrett's metaplasia, is rising in incidence more rapidly than any other cancer in the Western world. Elevated expression of c-MYC has been demonstrated in oesophageal adenocarcinoma; however, the expression of other members of the MYC/MAX/MAD network has not been addressed. The aims of this work were to characterise the expression of c-MYC, MAX and the MAD family in adenocarcinoma development and assess the effects of overexpression on cellular behaviour. mRNA expression in samples of Barrett's metaplasia and oesophageal adenocarcinoma were examined by qRT–PCR. Semi-quantitative immunohistochemistry and western blotting were used to examine cellular localisation and protein levels. Cellular proliferation and mRNA expression were determined in SEG1 cells overexpressing c-MYCER or MAD1 using a bromodeoxyuridine assay and qRT–PCR, respectively. Consistent with previous work expression of c-MYC was deregulated in oesophageal adenocarcinoma. Paradoxically, increased expression of putative c-MYC antagonists MAD1 and MXI1 was observed in tumour specimens. Overexpression of c-MYC and MAD proteins in SEG1 cells resulted in differential expression of MYC/MAX/MAD network members and reciprocal changes in proliferation. In conclusion, the expression patterns of c-MYC, MAX and the MAD family were shown to be deregulated in the oesophageal cancer model
Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)
Namoro na adolescência no Brasil: circularidade da violência psicológica nos diferentes contextos relacionais
Use of Biomarkers in the Evaluation and Treatment of Hypertensive Patients
The current definition of hypertension is based on blood pressure values, and blood pressure also drives treatment decisions, is the most important treatment monitoring tool and helps estimating risk of hypertension related organ damage. In an era of precision medicine additional biomarkers are needed in the diagnosis and management of patients with hypertension. In this review we outline the areas in which functional, imaging and circulating biomarkers could help in a more individualised definition of hypertension and associated risk. We will cover biomarkers for diagnosis; of pathophysiology and prediction of hypertension; response to treatment, organ damage; and to monitor treatment. A clear focus is on the vasculature, the heart and the kidneys, whereas we see a need to further develop biomarkers of cerebral function in order to diagnose cognition deficits and monitor changes in cognition in the future to support addressing the growing burden of hypertension associated vascular dementia
Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites
- …
