612 research outputs found
Combining Spreadsheet Smells for Improved Fault Prediction
Spreadsheets are commonly used in organizations as a programming tool for
business-related calculations and decision making. Since faults in spreadsheets
can have severe business impacts, a number of approaches from general software
engineering have been applied to spreadsheets in recent years, among them the
concept of code smells. Smells can in particular be used for the task of fault
prediction. An analysis of existing spreadsheet smells, however, revealed that
the predictive power of individual smells can be limited. In this work we
therefore propose a machine learning based approach which combines the
predictions of individual smells by using an AdaBoost ensemble classifier.
Experiments on two public datasets containing real-world spreadsheet faults
show significant improvements in terms of fault prediction accuracy.Comment: 4 pages, 1 figure, to be published in 40th International Conference
on Software Engineering: New Ideas and Emerging Results Trac
Local Popularity and Time in top-N Recommendation
Items popularity is a strong signal in recommendation algorithms. It strongly
affects collaborative filtering approaches and it has been proven to be a very
good baseline in terms of results accuracy. Even though we miss an actual
personalization, global popularity can be effectively used to recommend items
to users. In this paper we introduce the idea of a time-aware personalized
popularity in recommender systems by considering both items popularity among
neighbors and how it changes over time. An experimental evaluation shows a
highly competitive behavior of the proposed approach, compared to state of the
art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page
Beyond Personalization: Research Directions in Multistakeholder Recommendation
Recommender systems are personalized information access applications; they
are ubiquitous in today's online environment, and effective at finding items
that meet user needs and tastes. As the reach of recommender systems has
extended, it has become apparent that the single-minded focus on the user
common to academic research has obscured other important aspects of
recommendation outcomes. Properties such as fairness, balance, profitability,
and reciprocity are not captured by typical metrics for recommender system
evaluation. The concept of multistakeholder recommendation has emerged as a
unifying framework for describing and understanding recommendation settings
where the end user is not the sole focus. This article describes the origins of
multistakeholder recommendation, and the landscape of system designs. It
provides illustrative examples of current research, as well as outlining open
questions and research directions for the field.Comment: 64 page
Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce
In this paper, we present our work towards comparing on-line and off-line
evaluation metrics in the context of small e-commerce recommender systems.
Recommending on small e-commerce enterprises is rather challenging due to the
lower volume of interactions and low user loyalty, rarely extending beyond a
single session. On the other hand, we usually have to deal with lower volumes
of objects, which are easier to discover by users through various
browsing/searching GUIs.
The main goal of this paper is to determine applicability of off-line
evaluation metrics in learning true usability of recommender systems (evaluated
on-line in A/B testing). In total 800 variants of recommending algorithms were
evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based,
novelty and diversity evaluation. The off-line results were afterwards compared
with on-line evaluation of 12 selected recommender variants and based on the
results, we tried to learn and utilize an off-line to on-line results
prediction model.
Off-line results shown a great variance in performance w.r.t. different
metrics with the Pareto front covering 68\% of the approaches. Furthermore, we
observed that on-line results are considerably affected by the novelty of
users. On-line metrics correlates positively with ranking-based metrics (AUC,
MRR, nDCG) for novice users, while too high values of diversity and novelty had
a negative impact on the on-line results for them. For users with more visited
items, however, the diversity became more important, while ranking-based
metrics relevance gradually decrease.Comment: Submitted to ACM Hypertext 2020 Conferenc
Bounded non-deterministic planning for multimedia adaptation
This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan
Multimedia Adaptation Decisions Modelled as Non-Deterministic Operations
This paper describes how a multimedia adaptation framework can automatically decide the sequence of operations to be executed in order to adapt an MPEG- 21 Digital Item to the MPEG-21 description of the usage environment in which it will be consumed. The main innovation of this work with respect to previous multimedia adaptation decision models is that in the proposed approach decisions can be made without knowing the exact behaviour of the operations that are going to be executed
Evaluating Conversational Recommender Systems: A Landscape of Research
Conversational recommender systems aim to interactively support online users
in their information search and decision-making processes in an intuitive way.
With the latest advances in voice-controlled devices, natural language
processing, and AI in general, such systems received increased attention in
recent years. Technically, conversational recommenders are usually complex
multi-component applications and often consist of multiple machine learning
models and a natural language user interface. Evaluating such a complex system
in a holistic way can therefore be challenging, as it requires (i) the
assessment of the quality of the different learning components, and (ii) the
quality perception of the system as a whole by users. Thus, a mixed methods
approach is often required, which may combine objective (computational) and
subjective (perception-oriented) evaluation techniques. In this paper, we
review common evaluation approaches for conversational recommender systems,
identify possible limitations, and outline future directions towards more
holistic evaluation practices
- …
