612 research outputs found

    Combining Spreadsheet Smells for Improved Fault Prediction

    Full text link
    Spreadsheets are commonly used in organizations as a programming tool for business-related calculations and decision making. Since faults in spreadsheets can have severe business impacts, a number of approaches from general software engineering have been applied to spreadsheets in recent years, among them the concept of code smells. Smells can in particular be used for the task of fault prediction. An analysis of existing spreadsheet smells, however, revealed that the predictive power of individual smells can be limited. In this work we therefore propose a machine learning based approach which combines the predictions of individual smells by using an AdaBoost ensemble classifier. Experiments on two public datasets containing real-world spreadsheet faults show significant improvements in terms of fault prediction accuracy.Comment: 4 pages, 1 figure, to be published in 40th International Conference on Software Engineering: New Ideas and Emerging Results Trac

    Local Popularity and Time in top-N Recommendation

    Full text link
    Items popularity is a strong signal in recommendation algorithms. It strongly affects collaborative filtering approaches and it has been proven to be a very good baseline in terms of results accuracy. Even though we miss an actual personalization, global popularity can be effectively used to recommend items to users. In this paper we introduce the idea of a time-aware personalized popularity in recommender systems by considering both items popularity among neighbors and how it changes over time. An experimental evaluation shows a highly competitive behavior of the proposed approach, compared to state of the art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page

    Beyond Personalization: Research Directions in Multistakeholder Recommendation

    Get PDF
    Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.Comment: 64 page

    Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

    Full text link
    In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommending algorithms were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 68\% of the approaches. Furthermore, we observed that on-line results are considerably affected by the novelty of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of diversity and novelty had a negative impact on the on-line results for them. For users with more visited items, however, the diversity became more important, while ranking-based metrics relevance gradually decrease.Comment: Submitted to ACM Hypertext 2020 Conferenc

    Bounded non-deterministic planning for multimedia adaptation

    Get PDF
    This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan

    Multimedia Adaptation Decisions Modelled as Non-Deterministic Operations

    Get PDF
    This paper describes how a multimedia adaptation framework can automatically decide the sequence of operations to be executed in order to adapt an MPEG- 21 Digital Item to the MPEG-21 description of the usage environment in which it will be consumed. The main innovation of this work with respect to previous multimedia adaptation decision models is that in the proposed approach decisions can be made without knowing the exact behaviour of the operations that are going to be executed

    Evaluating Conversational Recommender Systems: A Landscape of Research

    Full text link
    Conversational recommender systems aim to interactively support online users in their information search and decision-making processes in an intuitive way. With the latest advances in voice-controlled devices, natural language processing, and AI in general, such systems received increased attention in recent years. Technically, conversational recommenders are usually complex multi-component applications and often consist of multiple machine learning models and a natural language user interface. Evaluating such a complex system in a holistic way can therefore be challenging, as it requires (i) the assessment of the quality of the different learning components, and (ii) the quality perception of the system as a whole by users. Thus, a mixed methods approach is often required, which may combine objective (computational) and subjective (perception-oriented) evaluation techniques. In this paper, we review common evaluation approaches for conversational recommender systems, identify possible limitations, and outline future directions towards more holistic evaluation practices
    corecore