348 research outputs found

    Generalizations of Boxworld

    Full text link
    Boxworld is a toy theory that can generate extremal nonlocal correlations known as PR boxes. These have been well established as an important tool to examine general nonlocal correlations, even beyond the correlations that are possible in quantum theory. We modify boxworld to include new features. The first modification affects the construction of joint systems such that the new theory allows entangled measurements as well as entangled states in contrast to the standard version of boxworld. The extension to multipartite systems and the consequences for entanglement swapping are analysed. Another modification provides continuous transitions between classical probability theory and boxworld, including the algebraic expression for the maximal CHSH violation as a function of the transition parameters.Comment: In Proceedings QPL 2011, arXiv:1210.029

    Non-locality in theories without the no-restriction hypothesis

    Full text link
    The framework of generalized probabilistic theories (GPT) is a widely-used approach for studying the physical foundations of quantum theory. The standard GPT framework assumes the no-restriction hypothesis, in which the state space of a physical theory determines the set of measurements. However, this assumption is not physically motivated. In Janotta and Lal [Phys. Rev. A 87, 052131 (2013)], it was shown how this assumption can be relaxed, and how such an approach can be used to describe new classes of probabilistic theories. This involves introducing a new, more general, definition of maximal joint state spaces, which we call the generalised maximal tensor product. Here we show that the generalised maximal tensor product recovers the standard maximal tensor product when at least one of the systems in a bipartite scenario obeys the no-restriction hypothesis. We also show that, under certain conditions, relaxing the no-restriction hypothesis for a given state space does not allow for stronger non-locality, although the generalized maximal tensor product may allow new joint states.Comment: In Proceedings QPL 2013, arXiv:1412.791

    Limits on non-local correlations from the structure of the local state space

    Get PDF
    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This work shows that there is a connection between the strength of nonlocal correlations in a physical theory, and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum, and super-quantum correlations, by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not - depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories - including, by extension, all bipartite classical and quantum states - cannot violate macroscopic locality. Finally, our results show that there exist models which are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.Comment: 26 pages, 4 figures. v2: Document structure changed. Main theorem has been extended. It applies to all quantum states now. v3: new abstrac

    Can the judo training improve the muscle-skeletal acting in older women with low bone mineral density?

    Get PDF
    Osteoporosis is a bone disease that causes bone fragility with increased risks of fractures and negative consequences on human mobility. The planned and monitored physical activity by professionals have shown good results on bone density, body balance and quality of life, factors that are determinants to the functional autonomy and independence of older women. The exercises and techniques realization of adapted judo are of low difficulty, emphasizing the development of motor coordination, muscle strength, body balance and consequently the bone density. Thus, the objective of this work is to present the adapted judo training as a physical activity alternative for older women with low bone density, demonstrating that the adaptation of judo training with professional supervision can help maintain bone density and other related-variables listed in this population.Fundação de Amparo a Pesquisa da Amazônia (FAPESPA) Pará/Brasil e a CAPES do Brasil

    Three-slit experiments and quantum nonlocality

    Full text link
    An interesting link between two very different physical aspects of quantum mechanics is revealed; these are the absence of third-order interference and Tsirelson's bound for the nonlocal correlations. Considering multiple-slit experiments - not only the traditional configuration with two slits, but also configurations with three and more slits - Sorkin detected that third-order (and higher-order) interference is not possible in quantum mechanics. The EPR experiments show that quantum mechanics involves nonlocal correlations which are demonstrated in a violation of the Bell or CHSH inequality, but are still limited by a bound discovered by Tsirelson. It now turns out that Tsirelson's bound holds in a broad class of probabilistic theories provided that they rule out third-order interference. A major characteristic of this class is the existence of a reasonable calculus of conditional probability or, phrased more physically, of a reasonable model for the quantum measurement process.Comment: 9 pages, no figur

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio
    corecore