1,624 research outputs found

    Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films.

    Get PDF
    The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi2Se3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of topological behaviour is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices

    Structural origins of the properties of rare earth nickelate superlattices

    Full text link
    NiO6 octahedral tilts in the LaNiO3/SrTiO3 superlattices are quantified using position averaged convergent beam electron diffraction in scanning transmission electron microscopy. It is shown that maintaining oxygen octahedra connectivity across the interface controls the octahedral tilts in the LaNiO3 layers, their lattice parameters and their transport properties. Unlike films and layers that are connected on one side to the substrate, subsequent LaNiO3 layers in the superlattice exhibit a relaxation of octahedral tilts towards bulk values. This relaxation is facilitated by correlated tilts in SrTiO3 layers and is correlated with the conductivity enhancement of the LaNiO3 layers in the superlattices relative to individual films.Comment: Accepted for publication in Physical Review B (Rapid Communication
    corecore