1,624 research outputs found
Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films.
The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi2Se3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of topological behaviour is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices
Recommended from our members
Structural and electronic properties of SrZrO3 and Sr(Ti,Zr) O3 alloys
Using hybrid density functional calculations, we study the electronic and structural properties of SrZrO3 and ordered Sr(Ti,Zr)O3 alloys. Calculations were performed for the ground-state orthorhombic (Pnma) and high-temperature cubic (Pm3m) phases of SrZrO3. The variation of the lattice parameters and band gaps with Ti addition was studied using ordered SrTixZr1-xO3 structures with x=0, 0.25, 0.5, 0.75, and 1. As Ti is added to SrZrO3, the lattice parameter is reduced and closely follows Vegard's law. On the other hand, the band gap shows a large bowing and is highly sensitive to the Ti distribution. For x=0.5, we find that arranging the Ti and Zr atoms into a 1×1SrZrO3/SrTiO3 superlattice along the [001] direction leads to interesting properties, including a highly dispersive single band at the conduction-band minimum (CBM), which is absent in both parent compounds, and a band gap close to that of pure SrTiO3. These features are explained by the splitting of the lowest three conduction-band states due to the reduced symmetry of the superlattice, lowering the band originating from the in-plane Ti 3dxy orbitals. The lifting of the t2g orbital degeneracy around the CBM suppresses scattering due to electron-phonon interactions. Our results demonstrate how short-period SrZrO3/SrTiO3 superlattices could be exploited to engineer the band structure and improve carrier mobility compared to bulk SrTiO3
Recommended from our members
Role of point defects in the electrical and optical properties of In2O3
Structural origins of the properties of rare earth nickelate superlattices
NiO6 octahedral tilts in the LaNiO3/SrTiO3 superlattices are quantified using
position averaged convergent beam electron diffraction in scanning transmission
electron microscopy. It is shown that maintaining oxygen octahedra connectivity
across the interface controls the octahedral tilts in the LaNiO3 layers, their
lattice parameters and their transport properties. Unlike films and layers that
are connected on one side to the substrate, subsequent LaNiO3 layers in the
superlattice exhibit a relaxation of octahedral tilts towards bulk values. This
relaxation is facilitated by correlated tilts in SrTiO3 layers and is
correlated with the conductivity enhancement of the LaNiO3 layers in the
superlattices relative to individual films.Comment: Accepted for publication in Physical Review B (Rapid Communication
Recommended from our members
Impact of phonons and spin-orbit coupling on Auger recombination in InAs
- …
