699 research outputs found
Natural linewidth analysis of d-band photoemission from Ag(110)
We report a high-resolution angle-resolved study of photoemission linewidths
observed for Ag(110). A careful data analysis yields kdd\tau_h \geq 22
d$-hole dynamics in Cu (I.\
Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime
enhancement by a small scattering cross-section of - and -states below
the Fermi level. With increasing distance to the -hole lifetimes get
shorter because of the rapidly increasing density of d-states and contributions
of intra--band scattering processes, but remain clearly above
free-electron-model predictions.Comment: 14 pages, 7 figure
Quasiparticles and Energy Scaling in BiSrCaCuO (=1-3): Angle-Resolved Photoemission Spectroscopy
Angle-resolved photoemission spectroscopy (ARPES) has been performed on the
single- to triple-layered Bi-family high-{\it T} superconductors
(BiSrCaCuO, =1-3). We found a sharp
quasiparticle peak as well as a pseudogap at the Fermi level in the
triple-layered compound. Comparison among three compounds has revealed a
universal rule that the characteristic energies of superconducting and
pseudogap behaviors are scaled with the maximum {\it T}.Comment: 4 pages, 4 figure
Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ
The electronic structure of the quasi-one-dimensional organic conductor
TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant discrepancies to band theory. We
demonstrate that the measured dispersions can be consistently mapped onto the
one-dimensional Hubbard model at finite doping. This interpretation is further
supported by a remarkable transfer of spectral weight as function of
temperature. The ARPES data thus show spectroscopic signatures of spin-charge
separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
We study the electronic structure of the quasi-one-dimensional organic
conductor TTF-TCNQ by means of density-functional band theory, Hubbard model
calculations, and angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant quantitative and qualitative
discrepancies to band theory. We demonstrate that the dispersive behavior as
well as the temperature-dependence of the spectra can be consistently explained
by the finite-energy physics of the one-dimensional Hubbard model at metallic
doping. The model description can even be made quantitative, if one accounts
for an enhanced hopping integral at the surface, most likely caused by a
relaxation of the topmost molecular layer. Within this interpretation the ARPES
data provide spectroscopic evidence for the existence of spin-charge separation
on an energy scale of the conduction band width. The failure of the
one-dimensional Hubbard model for the {\it low-energy} spectral behavior is
attributed to interchain coupling and the additional effect of electron-phonon
interaction.Comment: 18 pages, 9 figure
Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
An autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8+ T cells, the mice, like human patients with PDA, did not respond to two immunological checkpoint antagonists that promote the function of T cells: anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (α-PD-L1). Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). The depletion of the FAP+ stromal cell also uncovered the antitumor effects of α-CTLA-4 and α-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T-cell checkpoint antagonists. Three findings suggested that chemokine (C-X-C motif) ligand 12 (CXCL12) explained the overriding immunosuppression by the FAP+ cell: T cells were absent from regions of the tumor containing cancer cells, cancer cells were coated with the chemokine, CXCL12, and the FAP+ CAF was the principal source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor chemokine (C-X-C motif) receptor 4 inhibitor, induced rapid T-cell accumulation among cancer cells and acted synergistically with α-PD-L1 to greatly diminish cancer cells, which were identified by their loss of heterozygosity of Trp53 gene. The residual tumor was composed only of premalignant epithelial cells and in flammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP+ CAF, may direct tumor immune evasion in a model of human PDA
Developments in the negative-U modelling of the cuprate HTSC systems
The paper deals with the many stands that go into creating the unique and
complex nature of the HTSC cuprates above Tc as below. Like its predecessors it
treats charge, not spin or lattice, as prime mover, but thus taken in the
context of the chemical bonding relevant to these copper oxides. The crucial
shell filling, negative-U, double-loading fluctuations possible there require
accessing at high valent local environment as prevails within the mixed valent,
inhomogeneous two sub-system circumstance of the HTSC materials. Close
attention is paid to the recent results from Corson, Demsar, Li, Johnson,
Norman, Varma, Gyorffy and colleagues.Comment: 44 pages:200+ references. Submitted to J.Phys.:Condensed Matter, Sept
7 200
Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit
We have investigated the lowest binding-energy electronic structure of the
model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy
(ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give
a comprehensive, self-consistent picture of the nature of the first
electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we
show a strong dependence on the polarization of the excitation light which is
understandable in the context of the matrix element governing the photoemission
process, which gives a state with the symmetry of a Zhang-Rice singlet.
Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice
singlet on the exciting photon-energy is shown to be consistent with
interference effects connected with the periodicity of the crystal structure in
the crystallographic c-direction. Thirdly, we measured the dispersion of the
first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being
controversial in the literature, and have shown that the data are best fitted
using an extended t-J-model, and extract the relevant model parameters. An
analysis of the spectral weight of the first ionization states for different
excitation energies within the approach used by Leung et al. (Phys. Rev. B56,
6320 (1997)) results in a strongly photon-energy dependent ratio between the
coherent and incoherent spectral weight. The possible reasons for this
observation and its physical implications are discussed.Comment: 10 pages, 8 figure
- …
