325 research outputs found
Metabolic analysis of the interaction between plants and herbivores
Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion
In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin
The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene
Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease comple
Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM
The β-barrel assembly machinery (BAM) is a ~203 kDa complex of five proteins (BamA-E) which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a ‘lateral gating’ motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex, and interactions between BamA, B, D, and E and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM
Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels
The seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions has perplexed scientists for decades. Although numerous models have addressed selective permeation in K+ channels, the combination of conduction efficiency and ion selectivity has not yet been linked through a unified functional model. Here, we investigate the mechanism of ion selectivity through atomistic simulations totalling more than 400 μs in length, which include over 7,000 permeation events. Together with free-energy calculations, our simulations show that both rapid permeation of K+ and ion selectivity are ultimately based on a single principle: the direct knock-on of completely desolvated ions in the channels' selectivity filter. Herein, the strong interactions between multiple 'naked' ions in the four filter binding sites give rise to a natural exclusion of any competing ions. Our results are in excellent agreement with experimental selectivity data, measured ion interaction energies and recent two-dimensional infrared spectra of filter ion configurations
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Recreational and Occupational Physical Activity and Risk of Adverse Events in Truncating MYBPC3 Founder Variant Carriers
BACKGROUND: MYBPC3 founder variants cause hypertrophic cardiomyopathy leading to heart failure and malignant ventricular arrhythmias. Exercise is typically regarded as a risk factor for disease expression although evidence is conflicting. Stratifying by type of exercise may discriminate low- from high-risk activities in these patients. Here, we evaluate the effects of exercise, stratified by high-static and high-dynamic components, on the risk of major cardiomyopathy-related events (MCEs) and cardiomyopathy penetrance among MYBPC3 founder variant carriers. METHODS: We interviewed 188 carriers (57.4% male; aged 43.0±15.0 years) on exercise participation since the age of 10 years. The exercise was quantified as the metabolic equivalent of task-h/wk before the presentation. MCE was defined as a composite of malignant ventricular arrhythmia (sustained ventricular tachycardia/fibrillation), heart failure (heart failure hospitalizations or transplantation), and septal reduction therapy. Static and dynamic exercises were defined per the Bethesda classification. Associations of exercise with MCE and cardiomyopathy penetrance were adjusted for sex and assessed using Cox regression. RESULTS: Overall, 43 (22.9%) subjects experienced MCE and 139 (73.9%) were diagnosed with cardiomyopathy. No association was found between overall physical activity and high-static activity with MCE (P=0.587 overall; P=0.322 high static) or cardiomyopathy penetrance (P=0.317 overall; P=0.623 high static). In contrast, high-dynamic activity was associated with malignant ventricular arrhythmia (dichotomized at the 75th percentile: adjusted hazard ratio, 3.26 [95% CI, 1.26-8.44]; P=0.015). CONCLUSIONS: Overall exercise participation does not generally increase the risk of adverse events among MYBPC3 founder variant carriers. Nonetheless, an increased risk of malignant ventricular arrhythmia was observed among those engaged in the highest quartile of high-dynamic sports, suggesting that high-level high-intensity exercise activities should be entertained with caution
Pre-dialysis patients' perceived autonomy, self-esteem and labor participation: associations with illness perceptions and treatment perceptions. A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Compared to healthy people, patients with chronic kidney disease (CKD) participate less in paid jobs and social activities. The aim of the study was to examine a) the perceived autonomy, self-esteem and labor participation of patients in the pre-dialysis phase, b) pre-dialysis patients' illness perceptions and treatment perceptions, and c) the association of these perceptions with autonomy, self-esteem and labor participation.</p> <p>Methods</p> <p>Patients (N = 109) completed questionnaires at home. Data were analysed using bivariate and multivariate analyses.</p> <p>Results</p> <p>The results showed that the average autonomy levels were not very high, but the average level of self-esteem was rather high, and that drop out of the labor market already occurs during the pre-dialysis phase. Positive illness and treatment beliefs were associated with higher autonomy and self-esteem levels, but not with employment. Multiple regression analyses revealed that illness and treatment perceptions explained a substantial amount of variance in autonomy (17%) and self-esteem (26%). The perception of less treatment disruption was an important predictor.</p> <p>Conclusions</p> <p>Patient education on possibilities to combine CKD and its treatment with activities, including paid work, might stimulate positive (realistic) beliefs and prevent or challenge negative beliefs. Interventions focusing on these aspects may assist patients to adjust to CKD, and ultimately prevent unnecessary drop out of the labor market.</p
Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of Human Blood Mononuclear Cells
Newborns and young infants suffer increased infectious morbidity and mortality as compared to older children and adults. Morbidity and mortality due to infection are highest during the first weeks of life, decreasing over several years. Furthermore, most vaccines are not administered around birth, but over the first few years of life. A more complete understanding of the ontogeny of the immune system over the first years of life is thus urgently needed. Here, we applied the most comprehensive analysis focused on the innate immune response following TLR stimulation over the first 2 years of life in the largest such longitudinal cohort studied to-date (35 subjects). We found that innate TLR responses (i) known to support Th17 adaptive immune responses (IL-23, IL-6) peaked around birth and declined over the following 2 years only to increase again by adulthood; (ii) potentially supporting antiviral defense (IFN-α) reached adult level function by 1 year of age; (iii) known to support Th1 type immunity (IL-12p70, IFN-γ) slowly rose from a low at birth but remained far below adult responses even at 2 years of age; (iv) inducing IL-10 production steadily declined from a high around birth to adult levels by 1 or 2 years of age, and; (v) leading to production of TNF-α or IL-1β varied by stimuli. Our data contradict the notion of a linear progression from an ‘immature’ neonatal to a ‘mature’ adult pattern, but instead indicate the existence of qualitative and quantitative age-specific changes in innate immune reactivity in response to TLR stimulation
Assessment of xenoestrogenic exposure by a biomarker approach: application of the E-Screen bioassay to determine estrogenic response of serum extracts
BACKGROUND: Epidemiological documentation of endocrine disruption is complicated by imprecise exposure assessment, especially when exposures are mixed. Even if the estrogenic activity of all compounds were known, the combined effect of possible additive and/or inhibiting interaction of xenoestrogens in a biological sample may be difficult to predict from chemical analysis of single compounds alone. Thus, analysis of mixtures allows evaluation of combined effects of chemicals each present at low concentrations. METHODS: We have developed an optimized in vitro E-Screen test to assess the combined functional estrogenic response of human serum. The xenoestrogens in serum were separated from endogenous steroids and pharmaceuticals by solid-phase extraction followed by fractionation by high-performance liquid chromatography. After dissolution of the isolated fraction in ethanol-DMSO, the reconstituted extract was added with estrogen-depleted fetal calf serum to MCF-7 cells, the growth of which is stimulated by estrogen. After a 6-day incubation on a microwell plate, cell proliferation was assessed and compared with the effect of a 17-beta-estradiol standard. RESULTS AND CONCLUSIONS: To determine the applicability of this approach, we assessed the estrogenicity of serum samples from 30 pregnant and 60 non-pregnant Danish women thought to be exposed only to low levels of endocrine disruptors. We also studied 211 serum samples from pregnant Faroese women, whose marine diet included whale blubber that contain a high concentration of persistent halogenated pollutants. The estrogenicity of the serum from Danish controls exceeded the background in 22.7 % of the cases, while the same was true for 68.1 % of the Faroese samples. The increased estrogenicity response did not correlate with the lipid-based concentrations of individual suspected endocrine disruptors in the Faroese samples. When added along with the estradiol standard, an indication of an enhanced estrogenic response was found in most cases. Thus, the in vitro estrogenicity response offers a promising and feasible approach for an aggregated exposure assessment for xenoestrogens in serum
- …
