72 research outputs found

    Regression of target organ damage in children and adolescents with primary hypertension

    Get PDF
    We assessed the effects of 12 months of non-pharmacological and pharmacological therapy on 24-h ambulatory blood pressure, regression of target organ damage (TOD) and metabolic abnormalities in 86 children (14.1 ± 2.4 years) with primary hypertension. Twenty-four hour systolic and diastolic blood pressure (BP) decreased (130 ± 8 vs 126 ± 8, 73 ± 7 vs 70 ± 7, p = 0.0001 and 0.004 respectively). Body mass index (BMI) did not change, but waist-to-hip (0.85 ± 0.07 vs 0.83 ± 0.05, p = 0.01) and waist-to-height ratio (WHtR; 0.49 ± 0.07 vs 0.48 ± 0.05, p = 0.008) decreased. Left ventricular mass index (LVMi; 38.5 ± 10.7 vs 35.2 ± 7.5 g/m2.7, p = 0.0001), prevalence of left ventricular hypertrophy (46.5% vs 31.4%; p = 0.0001), carotid intima-media thickness (cIMT; 0.44 ± 0.05 vs 0.42 ± 0.04 mm, p = 0.0001), wall cross sectional area (WCSA; 7.5 ± 1.3 vs 6.9 ± 1.2 mm2, p = 0.002), hsCRP (1.1 ± 1.0 vs 0.7 ± 0.7 mg/l, p = 0.002), and LDL-cholesterol (115 ± 33 vs 107 ± 26 mg/dl, p = 0.001) decreased. Patients who had lowered BP had a lower cIMT at the second examination (0.41 ± 0.04 vs 0.43 ± 0.04 mm, p = 0.04) and lower initial hsCRP values (0.9 ± 0.7 vs 1.5 ± 1.3 mg/l, p = 0.04) in comparison to non-responders. Regression analysis revealed that the main predictor of LVMi decrease was a decrease in abdominal fat expressed as a decrease in waist circumference (WC) (R2 = 0.280, β = 0.558, p = 0.005), for WCSA-SDS a decrease in WC (R2 = 0.332, β = 0.611, p = 0.009) and for a cIMT-SDS decrease the main predictor was a decrease in hsCRP concentrations (R2 = 0.137, β = 0.412, p = 0.03). Standard antihypertensive treatment lowered BP and led to regression of TOD in hypertensive children. Lean body mass increase and decrease in abdominal obesity correlated with TOD regression

    Hypertension Canada’s 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children

    Get PDF
    Hypertension Canada provides annually-updated, evidence-based guidelines for the diagnosis, assessment, prevention, and treatment of hypertension in adults and children. This year, the adult and pediatric guidelines are combined in one document. The new 2018 pregnancy-specific hypertension guidelines are published separately. For 2018, 5 new guidelines were introduced, and one existing guideline on the blood pressure thresholds and targets in the setting of thrombolysis for acute ischemic stroke was revised. The use of validated wrist devices for the estimation of blood pressure in individuals with large arm circumference is now included. Guidance is provided for the follow-up measurements of blood pressure, with the use of standardized methods and electronic (oscillometric) upper arm devices in individuals with hypertension, and either ambulatory blood pressure monitoring or home blood pressure monitoring in individuals with white coat effect. We specify that all individuals with hypertension should have an assessment of global cardiovascular risk to promote health behaviours that lower blood pressure. Finally, an angiotensin receptor-neprilysin inhibitor combination should be used in place of either an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in individuals with heart failure (with ejection fraction < 40%) who are symptomatic despite appropriate doses of guideline-directed heart failure therapies. The specific evidence and rationale underlying each of these guidelines are discussed

    Origins of Primary Hypertension in Children

    Full text link
    Although relatively rare in childhood, primary hypertension (PH) is thought to have originated in childhood and may be even determined perinatally. PH prevalence increases in school-age children and affects 11% of 18-year-old adolescents. Associated with metabolic risk factors, elevated blood pressure in childhood is carried into adulthood. Analysis of the phenotype of hypertensive children has revealed that PH is a complex of anthropometric and neuro-immuno-metabolic abnormalities, typically found in hypertensive adults. Children with elevated blood pressure have shown signs of accelerated biological development, which are closely associated with further development of PH, metabolic syndrome, and cardiovascular disease in adulthood. At the time of diagnosis, hypertensive children were reported to have significant arterial remodelling expressed as significantly increased carotid intima-media thickness, increased stiffness of large arteries, lower area of microcirculation, and decreased endothelial function. These changes indicate that their biological age is 4 to 5 years older than their normotensive peers. All these abnormalities are typical features of early vascular aging described in adults with PH. However, as these early vascular changes in hypertensive children are closely associated with features of accelerated biological development and neuro-immuno-metabolic abnormalities observed in older subjects, it seems that PH in childhood is not only an early vascular aging event, but also an early biological maturation phenomenon.</jats:p

    Blood pressure (BP) assessment—from BP level to BP variability

    Full text link

    KEEP THE FIRST READING: AN ARGUMENT FOR THE IMPORTANCE OF THE FIRST OFFICE BLOOD PRESSURE READING IN CHILDREN

    Full text link

    Should mean arterial pressure be included in the definition of ambulatory hypertension in children?

    Full text link
    corecore