2,557 research outputs found
3D mapping of young stars in the solar neighbourhood with Gaia DR2
We study the three dimensional arrangement of young stars in the solar
neighbourhood using the second release of the Gaia mission (Gaia DR2) and we
provide a new, original view of the spatial configuration of the star forming
regions within 500 pc from the Sun. By smoothing the star distribution through
a gaussian filter, we construct three dimensional density maps for early-type
stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS
and the UMS samples are selected through a combination of photometric and
astrometric criteria. A side product of the analysis is a three dimensional,
G-band extinction map, which we use to correct our colour-magnitude diagram for
extinction and reddening. Both density maps show three prominent structures,
Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass
star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and
Lacerta, which are less visible in the UMS map, due to the lack of large
numbers of bright, early-type stars. We report the finding of a candidate new
open cluster towards , which could be
related to the Orion star forming complex. We estimate ages for the PMS sample
and we study the distribution of PMS stars as a function of their age. We find
that younger stars cluster in dense, compact clumps, and are surrounded by
older sources, whose distribution is instead more diffuse. The youngest groups
that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus.
Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous.
Finally, we find that the three dimensional density maps show no evidence for
the existence of the ring-like structure which is usually referred to as the
Gould Belt.Comment: 17 pages, 17 figures, 6 appendixes; accepted for publication in A&A;
image quality decreased to comply with the arXiv.org rules on file siz
Is pollen size a robust proxy for moisture availability?
The development of well-constrained palaeo-proxies that enable the reconstruction of past climate change is becoming an ever more important field of scientific enquiry within the palaeobotanical community, with the potential to deliver broader impacts linked to understanding of future anthropogenic climate change. One of the major uncertainties in predicting climate change is how the hydrological cycle will respond to future warming. Griener and Warny (2015, Review of Palaeobotany and Palynology 221, 138-143) suggested that pollen size might be a useful proxy for tracking moisture availability, as pollen size appears to be negatively correlated with moisture. Given the long fossil record of pollen and spores such a proxy would have broad scope and the potential to deliver much needed information. Here we set out to fully evaluate and test the robustness of this proxy. We focus on a number of a key issues: controls on pollen size, data analysis, and finally proxy validation. Using this approach we find that there is little theoretical or empirical support for the original relationship proposed by Griener and Warny. Consequently it is currently premature to use pollen size as a moisture availability proxy in the fossil record. However, we recognise that the technique may have potential and conclude by offering a series of recommendations that would rigorously assess and test for a relationship between pollen size and moisture availability
Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease
Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake
Multi-wavelength observing of a forming solar-like star
V2129 Oph is a 1.35 solar mass classical T Tauri star, known to possess a
strong and complex magnetic field. By extrapolating from an observationally
derived magnetic surface map, obtained through Zeeman-Doppler imaging, models
of V2129 Oph's corona have been constructed, and used to make predictions
regarding the global X-ray emission measure, the amount of modulation of X-ray
emission, and the density of accretion shocks. In late June 2009 we will under
take an ambitious multi-wavelength, multi-observing site, and near
contemporaneous campaign, combining spectroscopic optical, nIR, UV, X-ray,
spectropolarimetric and photometric monitoring. This will allow the validity of
the 3D field topologies derived via field extrapolation to be determined.Comment: 4 pages, proceedings of the 3rd MSSL workshop on High Resolution
X-ray Spectroscopy: towards IX
X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks
We study the properties of powerful X-ray flares from 161 pre-main sequence
(PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula
region. Relationships between flare properties, protoplanetary disks and
accretion are examined in detail to test models of star-disk interactions at
the inner edge of the accretion disks. Previous studies had found no
differences in flaring between diskfree and accreting systems other than a
small overall diminution of X-ray luminosity in accreting systems. The most
important finding is that X-ray coronal extents in fast-rotating diskfree stars
can significantly exceed the Keplerian corotation radius, whereas X-ray loop
sizes in disky and accreting systems do not exceed the corotation radius. This
is consistent with models of star-disk magnetic interaction where the inner
disk truncates and confines the PMS stellar magnetosphere. We also find two
differences between flares in accreting and diskfree PMS stars. First, a
subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are
preferentially present in accreting systems. Second, we tentatively find that
accreting stars produce flares with shorter durations. Both results may be
consequences of the distortion and destabilization of the stellar magnetosphere
by the interacting disk. Finally, we find no evidence that any flare types,
even slow-rise flat-top flares are produced in star-disk magnetic loops. All
are consistent with enhanced solar long-duration events with both footprints
anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2
table
Chemical sensing of plant stress at the ecosystem scale
International audienceSignificant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR) (Park et al., 2006), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury (Ding et al., 2002). Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget (de Carlo et al., 2004; Goldstein and Galbally, 2007). If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions (Kulmala et al., 2001; Boy et al., 2000). Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth
Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi
Context. The soft X-ray emission from high density plasma observed in several CTTS is usually associated with the accretion process. However, it is still unclear whether this high density “cool” plasma is heated in the accretion shock, or if it is coronal plasma fed or modified by the accretion process.
Aims. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph. In this paper, we analyze Chandra grating spectrometer data and attempt to correlate the observed X-ray emitting plasma components with the characteristics of the accretion process and the stellar magnetic field constrained by simultaneous optical observations.
Methods. We analyze a 200 ks Chandra/HETGS observation, subdivided into two 100 ks segments, of the CTTS V2129 Oph. For the two observing segments corresponding to two different phases within one stellar rotation, we measure the density of the cool plasma component and the emission measure distribution.
Results. The X-ray emitting plasma covers a wide range of temperatures: from 2 up to 34 MK. The cool plasma component of V2129 Oph (T ≈ 3−4 MK) varies between the two segments of the Chandra observation: during the first observing segment high density plasma (log N_c = 12.1_(-1.1)^(+0.6)) with high EM at ~3−4 MK is present, whereas, during the second segment, this plasma component has lower EM and lower density (log N_e 3 R_⋆).
Conclusions. Our observation provides additional confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. In particular, during the first time interval a direct view of the shock region is possible, while, during the second, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing the accretion-driven X-rays
Searching for Star-Planet interactions within the magnetosphere of HD 189733
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In
order to study magnetospheric interactions between the star and the planet, we
explore the large-scale magnetic field and activity of the host star.
We collected spectra using the ESPaDOnS and the NARVAL spectropolarimeters,
installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope
Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and
July 2008).
HD 189733 has a mainly toroidal surface magnetic field, having a strength
that reaches up to 40 G. The star is differentially rotating, with latitudinal
angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to
equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d
respectively. The study of the stellar activity shows that it is modulated
mainly by the stellar rotation (rather than by the orbital period or the beat
period between the stellar rotation and the orbital periods). We report no
clear evidence of magnetospheric interactions between the star and the planet.
We also extrapolated the field in the stellar corona and calculated the
planetary radio emission expected for HD 189733b given the reconstructed field
topology. The radio flux we predict in the framework of this model is time
variable and potentially detectable with LOFAR
Brown representability for space-valued functors
In this paper we prove two theorems which resemble the classical
cohomological and homological Brown representability theorems. The main
difference is that our results classify small contravariant functors from
spaces to spaces up to weak equivalence of functors.
In more detail, we show that every small contravariant functor from spaces to
spaces which takes coproducts to products up to homotopy and takes homotopy
pushouts to homotopy pullbacks is naturally weekly equivalent to a
representable functor.
The second representability theorem states: every contravariant continuous
functor from the category of finite simplicial sets to simplicial sets taking
homotopy pushouts to homotopy pullbacks is equivalent to the restriction of a
representable functor. This theorem may be considered as a contravariant analog
of Goodwillie's classification of linear functors.Comment: 19 pages, final version, accepted by the Israel Journal of
Mathematic
- …
