46 research outputs found

    The Environmental Impacts of Trade Liberalization: A Quantitative Analysis for the United States Using TEAM

    Get PDF
    A highly disaggregated emissions factor model is presented. The model generates changes in emissions and resource use by state and 6-digit NAICS sector. Removal of all U.S. import restrictions is examined. Results for agriculture show that composition effects explain highly varied regional patterns of emission changes. Scale effects are also important for expanding sectors. Quantitative assessments such as this may prove useful in conducting full environmental reviews of U.S. trade agreements consistent with Executive Order 13141 and the Free Trade Act of 2002.trade, emissions, input-output, residuals, International Relations/Trade,

    Electric Sector Policy, Technological Change, and U.S. Emissions Reductions Goals: Results from the EMF 32 Model Intercomparison Project

    Get PDF
    The Energy Modeling Forum (EMF) 32 study compares a range of coordinated scenarios to explore implications of U.S. climate policy options and technological change on the electric power sector. Harmonized policy scenarios (including mass-based emissions limits and various power-sector-only carbon tax trajectories) across 16 models provide comparative assessments of potential impacts on electric sector investment and generation outcomes, emissions reductions, and economic implications. This paper compares results across these policy alternatives, including a variety of technological and natural gas price assumptions, and summarizes robust findings and areas of disagreement across participating models. Under a wide range of policy, technology, and market assumptions, model results suggest that future coal generation will decline relative to current levels while generation from natural gas, wind, and solar will increase, though the pace and extent of these changes vary by policy scenario, technological assumptions, region, and model. Climate policies can amplify trends already under way and make them less susceptible to future market changes. The model results provide useful insights to a range of stakeholders, but future research focused on intersectoral linkages in emission reductions (e.g., the role of electrification), effects of energy storage, and better coverage of bioenergy with carbon capture and storage (BECCS) can improve insights even further

    Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project

    Get PDF
    The Energy Modeling Forum (EMF) 32 study compares a range of coordinated scenarios to explore implications of U.S. climate policy options and technological change on the electric power sector. Harmonized policy scenarios (including mass-based emissions limits and various power-sector-only carbon tax trajectories) across 16 models provide comparative assessments of potential impacts on electric sector investment and generation outcomes, emissions reductions, and economic implications. This paper compares results across these policy alternatives, including a variety of technological and natural gas price assumptions, and summarizes robust findings and areas of disagreement across participating models. Under a wide range of policy, technology, and market assumptions, model results suggest that future coal generation will decline relative to current levels while generation from natural gas, wind, and solar will increase, though the pace and extent of these changes vary by policy scenario, technological assumptions, region, and model. Climate policies can amplify trends already under way and make them less susceptible to future market changes. The model results provide useful insights to a range of stakeholders, but future research focused on intersectoral linkages in emission reductions (e.g., the role of electrification), effects of energy storage, and better coverage of bioenergy with carbon capture and storage (BECCS) can improve insights even further

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.publishedVersio

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    US grain policies and the world market

    Full text link

    Economic Impacts of Municipal Recycling

    No full text
    Recycling efforts recovered about 55 million tons of municipal solid waste through approximately 9,000 curbside recycling programs and about 10,000 drop-off centers in 1996 (U.S. Environmental Protection Agency 1998). We investigate economic impacts of this activity using state-level data wherever possible. Our results indicate that, while recycling tends to increase waste management costs, the spending creates an important economic stimulus for the processing and collection industries. These industries can have a small positive effect on economic development. Local officials should be cognizant of the total economic impact of recycling as well as its consequences for the distribution of income.</jats:p
    corecore