654 research outputs found
Araneae and Opiliones From \u3ci\u3eTypha\u3c/i\u3e Spp. And \u3ci\u3ePhragmites Australis\u3c/i\u3e Stands of Green Bay, Lake Michigan, and an Exotic Spider Species Newly Reported From the U.S. Great Lakes Region
Invertebrates were sampled using pan traps in three paired sets of Typha spp. (cattail) and Phragmites australis (giant reed grass) habitats in Lake Michigan’s Green Bay in June and September 2002. The collection included 34 harvestmen belonging to one species (found at all three sites), and 180 spiders belonging to 25 species in eight families. The two habitats yielded similar numbers of spider taxa, and 16 species were restricted to one of the two habitats. Between 10 and 15 species were found at each site, and only five spider species were collected at all three sites.
Four species appear to be new records for the state of Wisconsin, including the linyphiid spiders Hypomma marxii (Keyserling) and Sitalcus ruralis Bishop & Crosby, and the salticid Synageles noxiosus (Hentz). Of particular interest is the first report from the U.S. Great Lakes region of the clubionid spider Clubiona pallidula (Clerck), a species introduced from Eurasia
Identification and Control of Electron-Nuclear Spin Defects in Diamond
We experimentally demonstrate an approach to scale up quantum devices by harnessing spin defects in the environment of a quantum probe. We follow this approach to identify, locate, and control two electron-nuclear spin defects in the environment of a single nitrogen-vacancy center in diamond. By performing spectroscopy at various orientations of the magnetic field, we extract the unknown parameters of the hyperfine and dipolar interaction tensors, which we use to locate the two spin defects and design control sequences to initialize, manipulate, and readout their quantum state. Finally, we create quantum coherence among the three electron spins, paving the way for the creation of genuine tripartite entanglement. This approach will be useful in assembling multispin quantum registers for applications in quantum sensing and quantum information processing
The Phonetics and Phonology of the Polish Calling Melodies
Two calling melodies of Polish were investigated, the routine call, used to call someone for an everyday reason, and the urgent call, which conveys disapproval of the addressee’s actions. A Discourse Completion Task was used to elicit the two melodies from speakers of Polish using twelve names from one to four syllables long; there were three names per syllable count, and speakers produced three tokens of each name with each melody. The results, based on eleven speakers, show that the routine calling melody consists of a low F0 stretch followed by a rise-fall-rise; the urgent calling melody, on the other hand, is a simple rise-fall. Systematic differences were found in the scaling and alignment of tonal targets: the routine call showed late alignment of the accentual pitch peak and in most instances lower scaling of targets. The accented vowel was also affected, being overall louder in the urgent call. Based on the data and comparisons with other Polish melodies, we analyse the routine call as LH* !H-H% and the urgent call as H* L-L%. We discuss the results and our analysis in light of recent findings on calling melodies in other languages, and explore their repercussions for intonational phonology and the modelling of intonation
An acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate
We have realized an acoustic analog to the Dynamical Casimir effect. The
density of a trapped Bose-Einstein condensate is modulated by changing the trap
stiffness. We observe the creation of correlated excitations with equal and
opposite momenta, and show that for a well defined modulation frequency, the
frequency of the excitations is half that of the trap modulation frequency.Comment: Includes supplemental informatio
Tunable source of correlated atom beams
We use a one-dimensional optical lattice to modify the dispersion relation of
atomic matter waves. Four-wave mixing in this situation produces atom pairs in
two well defined beams. We show that these beams present a narrow momentum
correlation, that their momenta are precisely tunable, and that this pair
source can be operated both in the regime of low mode occupancy and of high
mode occupancy
Spontaneous Four-Wave Mixing of de Broglie Waves: Beyond Optics
We investigate the atom-optical analog of degenerate four-wave mixing of
photons by colliding two Bose-Einstein condensates (BECs) of metastable helium
and measuring the resulting momentum distribution of the scattered atoms with a
time and space resolved detector. For the case of photons, phase matching
conditions completely define the final state of the system, and in the case of
two colliding BECs, simple analogy implies a spherical momentum distribution of
scattered atoms. We find, however, that the final momenta of the scattered
atoms instead lie on an ellipsoid whose radii are smaller than the initial
collision momentum. Numerical and analytical calculations agree well with the
measurements, and reveal the interplay between many-body effects, mean-field
interaction, and the anisotropy of the source condensate
Anisotropy in s-wave Bose-Einstein condensate collisions and its relationship to superradiance
We report the experimental realization of a single-species atomic four-wave
mixing process with BEC collisions for which the angular distribution of
scattered atom pairs is not isotropic, despite the collisions being in the
-wave regime. Theoretical analysis indicates that this anomalous behavior
can be explained by the anisotropic nature of the gain in the medium. There are
two competing anisotropic processes: classical trajectory deflections due to
the mean-field potential, and Bose enhanced scattering which bears similarity
to super-radiance. We analyse the relative importance of these processes in the
dynamical buildup of the anisotropic density distribution of scattered atoms,
and compare to optically pumped super-radiance.Comment: 13 pages, 10 figures, added a fuller discussion of timescales,
otherwise some minor changes in the text and the formatting of Figures 5-
Sub-Poissonian number differences in four-wave mixing of matter waves
We demonstrate sub-Poissonian number differences in four-wave mixing of
Bose-Einstein condensates of metastable helium. The collision between two
Bose-Einstein condensates produces a scattering halo populated by pairs of
atoms of opposing velocities, which we divide into several symmetric zones. We
show that the atom number difference for opposing zones has sub-Poissonian
noise fluctuations whereas that of nonopposing zones is well described by shot
noise. The atom pairs produced in a dual number state are well adapted to sub
shot-noise interferometry and studies of Einstein-Podolsky-Rosen-type
nonlocality tests.Comment: 4 pages, 3 figure
- …
