159 research outputs found
Creation, Implementation, and Adoption of Customer Success Manager Lifecycle Utilizing Agile
A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE
in
Project ManagementCreation, Implementation, and Adoption of Customer Success Manager Lifecycle utilizing Agile addresses the lack of documented internal processes for a company providing aerial imaging services (“Company”) that specifically describes how, when, and at what frequency a Customer Success Manager (CSM) would be most effective in communicating with active customers to maintain a predefined customer retention quota of 96.85%. This project’s goal is to create a measurable and repeatable lifecycle utilizing an agile methodology based on stakeholders’ feedback at regular sprint intervals to ensure final deliverables provide customer value. Business goals that this documented lifecycle will fulfill include creating a universal process to reduce rework at an individual CSM level for each customer. Based on this process the Company’s leadership team will be able to measure predefined key performance indicators (KPI): churn, upsell value, renewal status, risk, and overall customer satisfaction. These KPI’s are used to determine and forecast revenue generated by customer retention. Main project deliverables are a CSM lifecycle, an implementation plan of a CSM lifecycle for CSM teams, a training plan for CSM teams on use of these CSM lifecycle, an adoption plan for CSM team’s continued use of this process, and customer communication templates to CSM teams
Orbital fractures and concurrent ocular injury in a New Zealand tertiary centre
BackgroundOrbital fractures are a common presentation to acute care and carry an associated risk of ocular injury, however, previous research has not investigated injury rates by fracture category. These patients are frequently assessed by non-ophthalmic clinicians, however, limited data exists regarding referral patterns and how this impacts recorded injury rates (1–3).MethodsWe performed a retrospective review of all orbital fractures presenting to a tertiary hospital in Christchurch, New Zealand between March 2019 and March 2021. Data including mechanism of injury, fracture type, demographic characteristics, and associated ocular injury were recorded.Results284 patients with orbital fractures were identified. 41% of patients had isolated wall fractures, while 59% had complex orbitofacial fractures. Fractures were more common in males, and occurred more frequently in young individuals. The most common mechanism of injury was interpersonal violence (32%), followed by falls (23%). 41% of patients were reviewed by ophthalmology (n = 118). Of those, 33% had an associated ocular injury. Severe ocular injury (defined as vision threatening, requiring globe surgery or acute lateral canthotomy and cantholysis) occurred in 4.9% of those with formal ophthalmic review. 0.7% of patients required intraocular surgery or lateral canthotomy due to their orbital fracture.ConclusionOrbital fractures have a high rate of concurrent ocular injury in our study population, though rates of subsequent intraocular surgery are low. There was no significant difference in injury rates between isolated and complex fracture categories. Vision-threatening ocular injury occurred in 4.9% of fractures
The Effects of Familiarisation on Countermovement Jumps with Handheld Dumbbell Accentuated Eccentric Loading in Youth Athletes
Highlights
Significant differences in normalised force‐time data were observed between three CMJ AEL20 familiarisation sessions, particularly after the dumbbells' release point, indicating a potential learning effect.
Propulsion phase variables were reliable from the first session; however, unweighting and braking phase variables showed poor to moderate reliability, suggesting more than three familiarisation sessions are needed for these phases of the CMJ AEL .
Braking phase time demonstrated the poorest reliability between‐ and within‐sessions, likely because of inconsistent dumbbell release timing.
Future studies should investigate phase‐specific verbal cues to stabilise movement execution and enhance performance during CMJ AEL
Methodological considerations in assessing countermovement jumps with handheld accentuated eccentric loading
This study aimed to compare the agreement between three-dimensional motion capture and vertical ground reaction force (vGRF) in identifying the point of dumbbell (DB) release during a countermovement jump with accentuated eccentric loading (CMJAEL), and to examine the influence of the vGRF analysis method on the reliability and magnitude of CMJAEL variables. Twenty participants (10 male, 10 female) completed five maximal effort CMJAEL at 20% and 30% of body mass (CMJAEL20 and CMJAEL30, respectively) using DBs. There was large variability between methods in both loading conditions, as indicated by the wide limits of agreement (CMJAEL20 = −0.22 to 0.07 s; CMJAEL30 = −0.29 to 0.14 s). Variables were calculated from the vGRF data, and compared between four methods (forward integration (FI), backward integration (BI), FI adjusted at bottom position (BP), FI adjusted at DB release point (DR)). Greater absolute reliability was observed for variables from DR (CV% ≤ 7.28) compared to BP (CV% ≤ 13.74), although relative reliability was superior following the BP method (ICC ≥ 0.781 vs ≥ 0.606, respectively). The vGRF method shows promise in pinpointing the DB release point when only force platforms are accessible, and a combination of FI and BI analyses is advised to understand CMJAEL dynamics
Building for the Future: A Systematic Review of the Effects of Eccentric Resistance Training on Measures of Physical Performance in Youth Athletes
Background:
Eccentric resistance training is recognised as an effective stimulus for enhancing measures of muscular strength and power in adult populations; however, its value in youth athletes is currently not well understood.
Objective:
The aim of this systematic review was to critically appraise the effects of eccentric resistance training on measures of physical performance (i.e. muscular strength, jump, sprint and change of direction) in youth athletes 18 years of age and under.
Methods:
Original journal articles published between 1950 and June 2022 were retrieved from electronic search engines of PubMed, SPORTDiscus and Google Scholar’s advanced search option. Full journal articles investigating the acute and chronic effects of eccentric resistance training on measures of physical performance in youth athletes (i.e. a person 18 years of age or under who competes in sport) were included. The methodological quality and bias of each study were assessed prior to data extraction using a modified Downs and Black checklist.
Results:
The search yielded 749 studies, of which 436 were duplicates. Three-hundred studies were excluded based upon title and abstract review and a further 5 studies were removed following the modified Downs and Black checklist. An additional 14 studies were identified during backward screening. Accordingly, 22 studies were included in our systematic review. The Nordic hamstring exercise and flywheel inertial training were the most frequently used eccentric resistance training methods in youth athletes. Improvements in physical performance following the Nordic hamstring exercise are dependent upon an increase in the breakpoint angle, rather than training volume (sets and repetitions), and are further elevated with the addition of hip extension exercises or high-speed running. A minimum of 3 familiarisation trials is necessary to elicit meaningful adaptations following flywheel inertial training. Furthermore, an emphasis should be placed upon decelerating the rotating flywheel during the final one to two thirds of the eccentric phase, rather than gradually throughout the entire eccentric phase.
Conclusions:
The findings of this systematic review support the inclusion of eccentric resistance training in youth athletes to improve measures of muscular strength, jump, sprint and change of direction performance. The current eccentric resistance training methods are predominantly limited to the Nordic hamstring exercise and flywheel inertial training; however, the efficacy of accentuated eccentric loading to improve jump performance warrants attention in future investigations
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations.
Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Agreement between numerical integration techniques during countermovement jumps with accentuated eccentric loading in youth athletes
This study evaluated agreement between a) force platform numerical integration techniques for calculating performance variables and b) three-dimensional (3D) motion capture and vertical ground reaction force (vGRF) methods for identifying the dumbbell release during countermovement jumps with accentuated eccentric loading (CMJAEL). Twenty adolescent participants (10 males, 10 females) performed CMJAEL with handheld dumbbells at 20%, 25% and 30% of body mass. Variables were compared across five integration methods using repeated measures Bland-Altman and two-way repeated measures ANOVA analyses (α = 0.05), with combined forward and backward integration serving as the criterion. Backward integration and after adjusting at the dumbbells release agreed with the criterion, while forward integration and adjusting at the bottom position did not. The dumbbell release point identified using 3D motion capture (criterion) was also compared to estimates derived from force platform data (vGRF method). The vGRF method identified the dumbbell release point in delay of 3D motion capture, with limits of agreement (LOA) between −0.17 and 0.03 s across conditions. These methods should not be used interchangeably; rather, we recommend that the vGRF method be used in situations whereby only force platforms are available, and that it is combined with forward and backward integration techniques
Determining Orientations of Optical Transition Dipole Moments Using Ultrafast X-ray Scattering
Identification
of the initially prepared, optically active state
remains a challenging problem in many studies of ultrafast photoinduced
processes. We show that the initially excited electronic state can
be determined using the anisotropic component of ultrafast time-resolved
X-ray scattering signals. The concept is demonstrated using the time-dependent
X-ray scattering of <i>N</i>-methyl morpholine in the gas
phase upon excitation by a 200 nm linearly polarized optical pulse.
Analysis of the angular dependence of the scattering signal near time
zero renders the orientation of the transition dipole moment in the
molecular frame and identifies the initially excited state as the
3p<sub><i>z</i></sub> Rydberg state, thus bypassing the
need for further experimental studies to determine the starting point
of the photoinduced dynamics and clarifying inconsistent computational
results
OME-Zarr:a cloud-optimized bioimaging file format with international community support
A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks
SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.
There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection
- …
