4,646 research outputs found
Optical based noninvasive glucose monitoring sensor prototype
Diabetes mellitus claims millions of lives every year. It affects the body in various ways by leading to many serious illnesses and premature mortality. Heart and kidney diseases, which are caused by diabetes, are increasing at an alarming rate. In this paper, we report a study of a noninvasive measurement technique to determine the glucose levels in the human body. Current existing methods to quantify the glucose level in the blood are predominantly invasive that involve taking the blood samples using finger pricking. In this paper, we report a spectroscopy-based noninvasive glucose monitoring system to measure glucose concentration. Near-infrared transmission spectroscopy is used and in vitro experiments are conducted, as well as in vivo. Our experimental study confirms a correlation between the sensor output voltage and glucose concentration levels. We report a low-cost prototype of spectroscopy-based noninvasive glucose monitoring system that demonstrates promising results in vitro and establishes a relationship between the optical signals and the changing levels of blood–glucose concentration
Identification of the alternative oxidase gene and its expression in the copepod Tigriopus californicus
In addition to the typical electron transport system (ETS) in animal mitochondria responsible for oxidative phosphorylation, in some species there exists an alternative oxidase (AOX) pathway capable of catalyzing the oxidation of ubiquinol and the reduction of oxygen to water. The discovery of AOX in animals is recent and further investigations into its expression, regulation, and physiological role have been hampered by the lack of a tractable experimental model organism. Our recent DNA database searches using bioinformatics revealed an AOX sequence in several marine copepods including Tigriopus californicus. This species lives in tidepools along the west coast of North America and is subject to a wide variety of daily environmental stresses. Here we verify the presence of the AOX gene in T. californicus and the expression of AOX mRNA and AOX protein in various life stages of the animal. We demonstrate that levels of the AOX protein increase in T. californicus in response to cold and heat stress compared to normal rearing temperature. We predict that a functional AOX pathway is present in T. californicus, propose that this species will be a useful model organism for the study of AOX in animals, and discuss future directions for animal AOX research
- …
