790 research outputs found

    Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing

    Get PDF
    PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing

    Impact of hepcidin antimicrobial peptide on iron overload in tuberculosis patients

    No full text
    Background: Iron acquisition is essential for the growth of Mycobacterium tuberculosis. Hepcidin is known as an antimicrobial peptide and a component of the innate immune response. Hepcidin inhibits M. tuberculosis growth in vitro. In this study, we decided to identify-582A> G variants of the HAMP promoter in patients with tuberculosis (TB) and investigate its effect on serum iron, ferritin, and hepcidin levels. Methods: The sample population consisted of 105 patients with TB and 104 healthy individuals. The-582A> G polymorphism was genotyped using a tetra-primers PCR set. Serum levels of hepcidin were determined using an ELISA kit. Statistical analysis was performed using SPSS software. Results: The G allele is meaningfully associated with TB disease (95% confidence interval = 2-4.8, p G polymorphism genotypes. There was significant reverse correlation between hepcidin and iron (r =-0.849, p = 0.006). Conclusion: A high association was found between serum hepcidin levels and the HAMP-582A> G variants in patients with TB. These observations indicate a hypothetical role of this polymorphism in iron metabolism. Hepcidin could perhaps be an option for the treatment of TB. © 2014 Informa Healthcare

    Study on the growth parameters of Capoeta trutta (Heckel, 1843) in Shour River, Iran

    Get PDF
    In this study growth characteristics of 815 tuwini (Capoeta trutta) in Shour River were investigated during July 2010 through June 2011. The population was composed of 62.94% females and 32.02% males. Sex ratio was 1: 1.96, with significant differences observed at 1:1 (x^2= 150.6; df= 1; p<0.05). The age distribution of this population ranged from <1 to 6 years. The distribution of length and weight was between 95 and 300 mm. The average length, except in <1 year olds, was statistically significant between sexes and average weight in all age groups was statistically significant between sexes (p<0.05). Weight-length relationship was determined as W=0.0115L^2.9475 (R=0.91) in males and W=0.0096L^3.0025 (R= 0.88) in females. Von-Bertalanffy growth equation was Lt= 24.5(1-e^-0.333(t+2.54)) for males and Lt= 36.4 (1- e^-0.129(t+4.02)) for females. Growth performance index was also estimated as Φ=2.301 in males and Φ=2.223 in females

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Development of a stochastic computational fluid dynamics approach for offshore wind farms

    Get PDF
    In this paper, a method for stochastic analysis of an offshore wind farm using computational fluid dynamics (CFD) is proposed. An existing offshore wind farm is modelled using a steady-state CFD solver at several deterministic input ranges and an approximation model is trained on the CFD results. The approximation model is then used in a Monte-Carlo analysis to build joint probability distributions for values of interest within the wind farm. The results are compared with real measurements obtained from the existing wind farm to quantify the accuracy of the predictions. It is shown that this method works well for the relatively simple problem considered in this study and has potential to be used in more complex situations where an existing analytical method is either insufficient or unable to make a good prediction

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Breathing disorders in congestive heart failure: gender, etiology and mortality

    Get PDF
    We investigated the relationship between sleep-disordered breathing (SDB) and Cheyne-Stokes respiration (CSR) while awake as well as mortality. Eighty-nine consecutive outpatients (29 females) with congestive heart failure (CHF; left ventricular ejection fraction, LVEF <45%) were prospectively evaluated. The presence of SDB and of CSR while awake before sleep onset was investigated by polysomnography. SDB prevalence was 81 and 56%, using apnea-hypopnea index cutoffs >5 and >15, respectively. CHF etiologies were similar according to the prevalence of SDB and sleep pattern. Males and females were similar in age, body mass index, and LVEF. Males presented more SDB (P = 0.01), higher apnea-hypopnea index (P = 0.04), more light sleep (stages 1 and 2; P < 0.05), and less deep sleep (P < 0.001) than females. During follow-up (25 ± 10 months), 27% of the population died. Non-survivors had lower LVEF (P = 0.01), worse New York Heart Association (NYHA) functional classification (P = 0.03), and higher CSR while awake (P < 0.001) than survivors. As determined by Cox proportional model, NYHA class IV (RR = 3.95, 95%CI = 1.37-11.38, P = 0.011) and CSR while awake with a marginal significance (RR = 2.96, 95%CI = 0.94-9.33, P = 0.064) were associated with mortality. In conclusion, the prevalence of SDB and sleep pattern of patients with Chagas' disease were similar to that of patients with CHF due to other etiologies. Males presented more frequent and more severe SDB and worse sleep quality than females. The presence of CSR while awake, but not during sleep, may be associated with a poor prognosis in patients with CHF

    An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change

    Get PDF
    Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding

    Sost haploinsufficiency provokes peracute lethal cardiac tamponade without rescuing the osteopenia in a mouse model of excess glucocorticoids

    Get PDF
    Glucocorticoid-induced secondary osteoporosis is the most predictable side-effect of this anti-inflammatory. One of the main mechanisms by which glucocorticoids achieve such deleterious outcome in bone is by antagonizing Wnt/β-catenin signalling. Sclerostin, encoded by Sost gene, is the main negative regulator of the pro-formative and anti-resorptive role of the Wnt signaling pathway in the skeleton. We hypothesized that the partial inactivation of sclerostin function by genetic manipulation will rescue the osteopenia induced by high endogenous glucocorticoid levels. Sost-deficient mice were crossed with an established mouse model of excess glucocorticoids and the effects on bone mass and structure were evaluated. Sost haploinsufficiency did not rescue the low bone mass induced by high glucocorticoids. Intriguingly, the critical manifestation of Sost-deficiency combined with glucocorticoid excess was sporadic, sudden, unprovoked, and non-convulsive death. Detailed histopathological analysis in a wide range of tissues identified peracute haemopericardium and cardiac tamponade to be the cause. These preclinical studies reveal outcomes with direct relevance to ongoing clinical trials exploring the use of anti-sclerostin antibodies as a treatment for osteoporosis. They particularly highlight a potential for increased cardiovascular risk and may inform improved stratification of patients that might otherwise benefit from anti-sclerostin antibody treatment
    corecore