15,604 research outputs found

    Distribution functions for a family of general-relativistic Hypervirial models in collisionless regime

    Full text link
    By considering the Einstein-Vlasov system for static spherically symmetric distributions of matter, we show that configurations with constant anisotropy parameter β\beta have, necessarily, a distribution function (DF) of the form F=l2βξ(ε)F=l^{-2\beta}\xi(\varepsilon), where ε=E/m\varepsilon=E/m and l=L/ml=L/m are the relativistic energy and angular momentum per unit rest mass, respectively. We exploit this result to obtain DFs for the general relativistic extension of the Hypervirial family introduced by Nguyen and Lingam (2013), which Newtonian potential is given by ϕ(r)=ϕo/[1+(r/a)n]1/n\phi(r)=-\phi_o /[1+(r/a)^{n}]^{1/n} (aa and ϕo\phi_o are positive free parameters, n=1,2,...n=1,2,...). Such DFs can be written in the form Fn=ln2ξn(ε)F_{n}=l^{n-2}\xi_{n}(\varepsilon). For odd nn, we find that ξn\xi_n is a polynomial of order 2n+12n+1 in ε\varepsilon, as in the case of the Hernquist model (n=1n=1), for which F1l1(2ε1)(ε1)2F_1\propto l^{-1}\left(2\varepsilon-1\right)\left(\varepsilon-1\right)^2. For even nn, we can write ξn\xi_n in terms of incomplete beta functions (Plummer model, n=2n=2, is an example). Since we demand that F0F\geq 0 throughout the phase space, the particular form of each ξn\xi_n leads to restrictions for the values of ϕo\phi_o. For example, for the Hernquist model we find that 0ϕo2/30\leq \phi_o \leq2/3, i.e. an upper bounding value less than the one obtained for Nguyen and Lingam (0ϕo10\leq \phi_o \leq1), based on energy conditions

    On the stability of circular orbits in galactic dynamics: Newtonian thin disks

    Full text link
    The study of off-equatorial orbits in razor-thin disks is still in its beginnings. Contrary to what was presented in the literature in recent publications, the vertical stability criterion for equatorial circular orbits cannot be based on the vertical epicyclic frequency, because of the discontinuity in the gravitational field on the equatorial plane. We present a rigorous criterion for the vertical stability of circular orbits in systems composed by a razor-thin disk surrounded by a smooth axially symmetric distribution of matter, the latter representing additional structures such as thick disk, bulge and (dark matter) halo. This criterion is satisfied once the mass surface density of the thin disk is positive. Qualitative and quantitative analyses of nearly equatorial orbits are presented. In particular, the analysis of nearly equatorial orbits allows us to construct an approximate analytical third integral of motion in this region of phase-space, which describes the shape of these orbits in the meridional plane.Comment: 3 pages, 1 figure. In Proceedings of the MG13 Meeting on General Relativity, Stockholm University, Sweden, 1-7 July 2012. World Scientific, Singapore. Based on arXiv:1206.6501. in The Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (In 3 Volumes), chap. 438, pages 2346-2348 (2015

    Diffeomorphisms from higher dimensional W-algebras

    Full text link
    Classical W-algebras in higher dimensions have been recently constructed. In this letter we show that there is a finitely generated subalgebra which is isomorphic to the algebra of local diffeomorphisms in D dimensions. Moreover, there is a tower of infinitely many fields transforming under this subalgebra as symmetric tensorial one-densities. We also unravel a structure isomorphic to the Schouten symmetric bracket, providing a natural generalization of w_\infty in higher dimensions.Comment: 10 page

    A geometric approach to integrability conditions for Riccati equations

    Full text link
    Several instances of integrable Riccati equations are analyzed from the geometric perspective of the theory of Lie systems. This provides us a unifying viewpoint for previous approaches.Comment: 14 page

    System dynamics modelling in systems biology and applications in pharmacology

    Get PDF
    El modelado matemático de sistemas biológicos complejos es uno de los temas clave en la Biología de Sistemas y varios métodos computacionales basados ​​en la simulación computarizada han sido aplicados hasta ahora para determinar el comportamiento de los sistemas no lineales. La Dinamica de Sistemas es una metodología de modelado intuitivo basada en el razonamiento cualitativo por el cual un modelo conceptual se puede describir como un conjunto de relaciones de causa y efecto entre las variables de un sistema. A partir de esta estructura, es posible obtener un conjunto de ecuaciones dinámicas que describan cuantitativamente el comportamiento del sistema. Centrándose en los sistemas farmacológicos, el modelado compartimental a menudo se utiliza para resolver un amplio espectro de problemas relacionados con la distribución de materiales en los sistemas vivos en la investigación, el diagnóstico y la terapia en todo el cuerpo, los órganos y los niveles celulares. En este artículo presentamos la metodología de modelado de Dinámica del Sistema y su aplicación al modelado de un modelo compartimental farmacocinético-farmacodinámico del efecto de profundidad anestésica en pacientes sometidos a intervenciones quirúrgicas, derivando un modelo de simulación en el entorno de simulación orientada a objetos OpenModelica. La Dinamica de Sistemas se puede ver como una herramienta educativa poderosa y fácil de usar y en la enseñanza de Biología de Sistemas.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore