15,604 research outputs found
Distribution functions for a family of general-relativistic Hypervirial models in collisionless regime
By considering the Einstein-Vlasov system for static spherically symmetric
distributions of matter, we show that configurations with constant anisotropy
parameter have, necessarily, a distribution function (DF) of the form
, where and are the
relativistic energy and angular momentum per unit rest mass, respectively. We
exploit this result to obtain DFs for the general relativistic extension of the
Hypervirial family introduced by Nguyen and Lingam (2013), which Newtonian
potential is given by ( and
are positive free parameters, ). Such DFs can be written in the form
. For odd , we find that is a
polynomial of order in , as in the case of the Hernquist
model (), for which . For even ,
we can write in terms of incomplete beta functions (Plummer model,
, is an example). Since we demand that throughout the phase
space, the particular form of each leads to restrictions for the values
of . For example, for the Hernquist model we find that , i.e. an upper bounding value less than the one obtained for Nguyen
and Lingam (), based on energy conditions
On the stability of circular orbits in galactic dynamics: Newtonian thin disks
The study of off-equatorial orbits in razor-thin disks is still in its
beginnings. Contrary to what was presented in the literature in recent
publications, the vertical stability criterion for equatorial circular orbits
cannot be based on the vertical epicyclic frequency, because of the
discontinuity in the gravitational field on the equatorial plane. We present a
rigorous criterion for the vertical stability of circular orbits in systems
composed by a razor-thin disk surrounded by a smooth axially symmetric
distribution of matter, the latter representing additional structures such as
thick disk, bulge and (dark matter) halo. This criterion is satisfied once the
mass surface density of the thin disk is positive. Qualitative and quantitative
analyses of nearly equatorial orbits are presented. In particular, the analysis
of nearly equatorial orbits allows us to construct an approximate analytical
third integral of motion in this region of phase-space, which describes the
shape of these orbits in the meridional plane.Comment: 3 pages, 1 figure. In Proceedings of the MG13 Meeting on General
Relativity, Stockholm University, Sweden, 1-7 July 2012. World Scientific,
Singapore. Based on arXiv:1206.6501. in The Thirteenth Marcel Grossmann
Meeting: On Recent Developments in Theoretical and Experimental General
Relativity, Astrophysics, and Relativistic Field Theories (In 3 Volumes),
chap. 438, pages 2346-2348 (2015
Diffeomorphisms from higher dimensional W-algebras
Classical W-algebras in higher dimensions have been recently constructed. In
this letter we show that there is a finitely generated subalgebra which is
isomorphic to the algebra of local diffeomorphisms in D dimensions. Moreover,
there is a tower of infinitely many fields transforming under this subalgebra
as symmetric tensorial one-densities. We also unravel a structure isomorphic to
the Schouten symmetric bracket, providing a natural generalization of w_\infty
in higher dimensions.Comment: 10 page
A geometric approach to integrability conditions for Riccati equations
Several instances of integrable Riccati equations are analyzed from the
geometric perspective of the theory of Lie systems. This provides us a unifying
viewpoint for previous approaches.Comment: 14 page
System dynamics modelling in systems biology and applications in pharmacology
El modelado matemático de sistemas biológicos complejos es uno de los temas clave en la Biología de Sistemas y varios métodos computacionales basados en la simulación computarizada han sido aplicados hasta ahora para determinar el comportamiento de los sistemas no lineales. La Dinamica de Sistemas es una metodología de modelado intuitivo basada en el razonamiento cualitativo por el cual un modelo conceptual se puede describir como un conjunto de relaciones de causa y efecto entre las variables de un sistema. A partir de esta estructura, es posible obtener un conjunto de ecuaciones dinámicas que describan cuantitativamente el comportamiento del sistema. Centrándose en los sistemas farmacológicos, el modelado compartimental a menudo se utiliza para resolver un amplio espectro de problemas relacionados con la distribución de materiales en los sistemas vivos en la investigación, el diagnóstico y la terapia en todo el cuerpo, los órganos y los niveles celulares.
En este artículo presentamos la metodología de modelado de Dinámica del Sistema y su aplicación al modelado de un modelo compartimental farmacocinético-farmacodinámico del efecto de profundidad anestésica en pacientes sometidos a intervenciones quirúrgicas, derivando un modelo de simulación en el entorno de simulación orientada a objetos OpenModelica. La Dinamica de Sistemas se puede ver como una herramienta educativa poderosa y fácil de usar y en la enseñanza de Biología de Sistemas.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
- …
