3,085 research outputs found

    Scheduling real-time, periodic jobs using imprecise results

    Get PDF
    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated

    Molecular Structure of Selected Tuber and Root Starches and Effect of Amylopectin Structure on Their Physical Properties

    Get PDF
    The objectives of this study were to characterize starches isolated from potato, canna, fern, and kudzu, grown in Hangzhou, China, for potential food and nonfood applications and to gain understandings of the structures and properties of tuber and root starches. Potato and canna starches with B-type X-ray patterns had larger proportions of amylopectin (AP) long branch chains (DP g37) than did fern (C-type) and kudzu (CA-type) starches. The analysis of Naegeli dextrins suggested that fern and kudzu starches had more branch points, R-(1,6)-D-glycosidic linkages, located within the double-helical crystalline lamella than did the B-type starches. Dispersed molecular densities of the C- and CA-type APs (11.6-13.5 g/mol/nm3) were significantly larger than those of the B-type APs (1.4-6.1 g/mol/nm3) in dilute solutions. The larger proportion of the long AP branch chains in the B-type starch granules resulted in greater gelatinization enthalpy changes (ΔH). Retrograded kudzu starch, which had the shortest average chain length (DP 25.1), melted at a lower temperature (37.9 °C) than the others. Higher peak viscosities (550-749 RVU at 8%, dsb) of potato starches were attributed to the greater concentrations of phosphate monoesters, longer branch chains, and larger granule sizes compared with other tuber and root starches

    Imprecise results: Utilizing partial computations in real-time systems

    Get PDF
    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model

    Real-Time Monitoring of the Mechanical Properties of a Soy Protein and Rubber Polymer during its Production Using Transient Infrared Spectroscopy

    Get PDF
    Soy protein-based polymers offer promising performance properties, but their characteristics are sensitively dependent on production conditions, so on-line monitoring could help provide the needed control during production. Mid-infrared spectroscopy combined with partial least squares offer the needed analysis, but the opacity of many materials in the mid-infrared limits its conventional application. Transient infrared spectroscopy is a method of acquiring mid-infrared spectra from moving streams in real time that avoids the opacity problem. We apply transient infrared spectroscopy to a polymer of soy protein and polyisoprene-graft-maleic anhydride– modified natural rubber during its compounding extrusion to measure tensile strength and Young’s modulus

    Scheduling periodic jobs using imprecise results

    Get PDF
    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars

    Get PDF
    Posted with permission from Journal of Agricultural and Food Chemistry, 55, no. 10 (2007): 4005–4013, doi: 10.1021/jf0706979. Copyright 2007 American Chemical Society.</p

    Thermal and structural properties of unusual starches from developmental corn lines

    Get PDF
    Starches from exotic corn lines were screened by using differential scanning calorimetry (DSC) to find thermal properties that were significantly different from those exhibited by starches from normal Corn Belt lines. Two independent gelatinization transitions, one corresponding to the melting of a peak at ∼66 °C and the other to a peak melting at ∼69 °C, were found in some starches. The melting characteristics were traced to two separate types of granules within the endosperm. Strong correlations were found between DSC properties and proportion of large granules with equivalent diameter ≥17 μm. Starches with a lower peak onset gelatinization temperature (ToG), had a lower normalized concentration of chains with a degree of polymerization (dp) of 15–24 and/or a greater normalized concentration of chains with a dp of 6–12. These studies will aid in understanding structure–thermal property relationships of starches, and in identifying corn lines of interest for commercial breeding

    Preparation and characteristics of enzyme-resistant pyrodextrins from corn s

    Get PDF
    Corn starch was modified by pyroconversion at 130°C in the presence of acid catalyst in a sealed container to produce non-digestible pyrodextrins. The effect of reaction time on the dextrinization process was investigated. Physicochemical properties of the pyrodextrins were analyzed, and the effect of the structure of pyrodextrins on the digestibility was evaluated. The pyrodextrin, prepared by heating corn starch with hydrochloric acid (0.1%, dry starch basis) at 130°C for 180 min, was well-soluble (97% at 25°C) and contained only one fraction of average molecular weight of 2.2 x 104 g/mol. The enzyme resistance of pyrodextrin, measured according to AOAC method 991.43 for Total Dietary Fiber, reached 42%

    Cereal grain-based biodegradable thermoplastic compositions

    Get PDF
    The present invention provides a biodegradable thermoplastic composition made of a cereal grain that is treated with an organic solvent, and optionally a cross-linking agent such as an aldehyde, an acid anhydride or an epoxide, to link together the starch and protein of the cereal grain. The compositions may be used to make extruded or molded articles that are biodegradable, water-resistant, and have a high level of physical strength
    corecore