2,405 research outputs found
Microcanonical Origin of the Maximum Entropy Principle for Open Systems
The canonical ensemble describes an open system in equilibrium with a heat
bath of fixed temperature. The probability distribution of such a system, the
Boltzmann distribution, is derived from the uniform probability distribution of
the closed universe consisting of the open system and the heat bath, by taking
the limit where the heat bath is much larger than the system of interest.
Alternatively, the Boltzmann distribution can be derived from the Maximum
Entropy Principle, where the Gibbs-Shannon entropy is maximized under the
constraint that the mean energy of the open system is fixed. To make the
connection between these two apparently distinct methods for deriving the
Boltzmann distribution, it is first shown that the uniform distribution for a
microcanonical distribution is obtained from the Maximum Entropy Principle
applied to a closed system. Then I show that the target function in the Maximum
Entropy Principle for the open system, is obtained by partial maximization of
Gibbs-Shannon entropy of the closed universe over the microstate probability
distributions of the heat bath. Thus, microcanonical origin of the Entropy
Maximization procedure for an open system, is established in a rigorous manner,
showing the equivalence between apparently two distinct approaches for deriving
the Boltzmann distribution. By extending the mathematical formalism to
dynamical paths, the result may also provide an alternative justification for
the principle of path entropy maximization as well.Comment: 12 pages, no figur
Not Just Cyberwarfare
© Springer Science+Business Media Dordrecht 2015Bringsjord and Licato provide a general meta-argument that cyberwarfare is so different from traditional kinetic warfare that no argument from analogy can allow the just war theory of Augustine and Aquinas (hereinafter called JWT) to be pulled over from traditional (modern) warfare to cyberwarfare. I believe that this meta- argument is sound and that it applies not just to cyberwarfare: in particular, on my reading of the meta-argument, argument from analogy has never been adequate to allow JWT to be applied to the kind of warfare that we are familiar with now.Peer reviewedSubmitted Versio
Generalized molecular chaos hypothesis and H-theorem: Problem of constraints and amendment of nonextensive statistical mechanics
Quite unexpectedly, kinetic theory is found to specify the correct definition
of average value to be employed in nonextensive statistical mechanics. It is
shown that the normal average is consistent with the generalized
Stosszahlansatz (i.e., molecular chaos hypothesis) and the associated
H-theorem, whereas the q-average widely used in the relevant literature is not.
In the course of the analysis, the distributions with finite cut-off factors
are rigorously treated. Accordingly, the formulation of nonextensive
statistical mechanics is amended based on the normal average. In addition, the
Shore-Johnson theorem, which supports the use of the q-average, is carefully
reexamined, and it is found that one of the axioms may not be appropriate for
systems to be treated within the framework of nonextensive statistical
mechanics.Comment: 22 pages, no figures. Accepted for publication in Phys. Rev.
Selective Control of the Symmetric Dicke Subspace in Trapped Ions
We propose a method of manipulating selectively the symmetric Dicke subspace
in the internal degrees of freedom of N trapped ions. We show that the direct
access to ionic-motional subspaces, based on a suitable tuning of
motion-dependent AC Stark shifts, induces a two-level dynamics involving
previously selected ionic Dicke states. In this manner, it is possible to
produce, sequentially and unitarily, ionic Dicke states with increasing
excitation number. Moreover, we propose a probabilistic technique to produce
directly any ionic Dicke state assuming suitable initial conditions.Comment: 5 pages and 1 figure. New version with minor changes and added
references. Accepted in Physical Review
Generalized rotating-wave approximation for arbitrarily large coupling
A generalized version of the rotating-wave approximation for the single-mode
spin-boson Hamiltonian is presented. It is shown that performing a simple
change of basis prior to eliminating the off-resonant terms results in a
significantly more accurate expression for the energy levels of the system. The
generalized approximation works for all values of the coupling strength and for
a wide range of detuning values, and may find applications in solid-state
experiments.Comment: 4 pages, 2 figs, REVTeX
Comparing Infrared Dirac-Born-Infeld Brane Inflation to Observations
We compare the Infrared Dirac-Born-Infeld (IR DBI) brane inflation model to
observations using a Bayesian analysis. The current data cannot distinguish it
from the \LambdaCDM model, but is able to give interesting constraints on
various microscopic parameters including the mass of the brane moduli
potential, the fundamental string scale, the charge or warp factor of throats,
and the number of the mobile branes. We quantify some distinctive testable
predictions with stringy signatures, such as the large non-Gaussianity, and the
large, but regional, running of the spectral index. These results illustrate
how we may be able to probe aspects of string theory using cosmological
observations.Comment: 54 pages, 13 figures. v2: non-Gaussianity constraint has been applied
to the model; parameter constraints have tightened significantly, conclusions
unchanged. References added; v3, minor revision, PRD versio
Kondo Resonance of a Microwave Photon
We emulate renormalization group models, such as the Spin-Boson Hamiltonian
or the anisotropic Kondo model, from a quantum optics perspective by
considering a superconducting device. The infra-red confinement involves photon
excitations of two tunable transmission lines entangled to an artificial
spin-1/2 particle or double-island charge qubit. Focusing on the propagation of
microwave light, in the underdamped regime of the Spin-Boson model, we identify
a many-body resonance where a photon is absorbed at the renormalized qubit
frequency and reemitted forward in an elastic manner. We also show that
asymptotic freedom of microwave light is reached by increasing the input signal
amplitude at low temperatures which allows the disappearance of the
transmission peak.Comment: Final Version: Main text and Supplementary Materia
Information Theory based on Non-additive Information Content
We generalize the Shannon's information theory in a nonadditive way by
focusing on the source coding theorem. The nonadditive information content we
adopted is consistent with the concept of the form invariance structure of the
nonextensive entropy. Some general properties of the nonadditive information
entropy are studied, in addition, the relation between the nonadditivity
and the codeword length is pointed out.Comment: 9 pages, no figures, RevTex, accepted for publication in Phys. Rev.
E(an error in proof of theorem 1 was corrected, typos corrected
Illusory Decoherence
If a quantum experiment includes random processes, then the results of
repeated measurements can appear consistent with irreversible decoherence even
if the system's evolution prior to measurement was reversible and unitary. Two
thought experiments are constructed as examples.Comment: 10 pages, 3 figure
A link between the maximum entropy approach and the variational entropy form
The maximum entropy approach operating with quite general entropy measure and
constraint is considered. It is demonstrated that for a conditional or
parametrized probability distribution there is a "universal"
relation among the entropy rate and the functions appearing in the constraint.
It is shown that the recently proposed variational formulation of the entropic
functional can be obtained as a consequence of this relation, that is from the
maximum entropy principle. This resolves certain puzzling points appeared in
the variational approach
- …
