95 research outputs found
Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host–parasite interactions
Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (=lungworms), which cause bronchitis (=dictyocaulosis, commonly known as “husk”) and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host–parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, β-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologues of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode–host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterisation of the genomes of Dictyocaulus spp. should underpin these endeavours
Mucosal-associated invariant T cells augment immunopathology and gastritis in chronic helicobacter pyloriInfection
Mucosal-associated invariant T (MAIT) cells produce inflammatory cytokines and cytotoxic granzymes in response to by-products of microbial riboflavin synthesis. Although MAIT cells are protective against some pathogens, we reasoned that they might contribute to pathology in chronic bacterial infection. We observed MAIT cells in proximity to Helicobacter pylori bacteria in human gastric tissue, and so, using MR1-tetramers, we examined whether MAIT cells contribute to chronic gastritis in a mouse H. pylori SS1 infection model. Following infection, MAIT cells accumulated to high numbers in the gastric mucosa of wild-type C57BL/6 mice, and this was even more pronounced in MAIT TCR transgenic mice or in C57BL/6 mice where MAIT cells were preprimed by Ag exposure or prior infection. Gastric MAIT cells possessed an effector memory Tc1/Tc17 phenotype, and were associated with accelerated gastritis characterized by augmented recruitment of neutrophils, macrophages, dendritic cells, eosinophils, and non-MAIT T cells and by marked gastric atrophy. Similarly treated MR1−/− mice, which lack MAIT cells, showed significantly less gastric pathology. Thus, we demonstrate the pathogenic potential of MAIT cells in Helicobacter-associated immunopathology, with implications for other chronic bacterial infections
The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans
Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine) is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD) and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs); ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288), likely to be involved in the parasite-host interactions, and also various molecules (n = 120) linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations
Need for national pollination strategy
Many of Australia’s tree crops rely on bees and other insects to transfer pollen among flowers and produce fruits or nuts. While some cultivars are self-compatible and can set fruit in the absence of insects, many require insect movement of pollen for optimal fruit and nut quality
High intraspecific variability of Echinococcus granulosus sensu stricto in Chile
Indexación: ScopusEchinococcus granulosus sensu stricto is the major cause of cystic echinococcosis in most human and animal cases in the world and the most widespread species within the E. granulosus sensu lato complex. E. granulosus s.s. remains endemic in South America together with other species of the Echinococcus genus, especially in some areas in Argentina, Brazil, Chile and Peru. Except for a single human case caused by E. canadensis (G6) described in the literature, only E. granulosus s.s. has been found in the Chilean territory. In the current study 1609 bp of the cox1 gene from 69 Chilean isolates of E. granulosus s.s. from humans and animals were analysed. In total, 26 cox1 haplotypes were found, including the widespread haplotype EG01 (22 isolates) and also EGp1 (5), EgRUS7 (1), EgAus02 (1) and EgAus03 (2). Twenty-one different haplotype not previously described were identified from 38 Chilean isolates designated EgCL1–EgCL21. Previous work had described low variability of E. granulosus s.s. in South America, based on isolates from Peru. Results obtained in this work challenge the previously described idea of the low diversity of the parasite in South America, and warrant future investigation on the origin and spread of the parasite in the continent after the Spanish arrival. © 2016https://www.sciencedirect.com/science/article/pii/S1383576916302513?pes=vo
- …
