543 research outputs found
Optical investigations of the chemical pressurized EuFe2(As1-xPx)2: an s-wave superconductor with strong interband interaction
Superconducting EuFe2(As0.82P0.18)2 single crystals are investigated by
infrared spectroscopy in a wide frequency range. Below Tc=28K a superconducting
gap forms at 2\Delta_{0} = 9.5 meV = 3.8 k_B T_c causing the reflectivity to
sharply rise to unity at low frequency. In the range of the gap the optical
conductivity can be perfectly described by BCS theory with an -wave gap and
no nodes. From our analysis of the temperature dependent conductivity and
spectral weight at T>T_c, we deduce an increased interband coupling between
hole- and electron-sheets on the Fermi surface when approaches T_c
Anisotropy, disorder, and superconductivity in CeCu2Si2 under high pressure
Resistivity measurements were carried out up to 8 GPa on single crystal and
polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity
range. The anisotropic response to current direction and small uniaxial
stresses was explored, taking advantage of the quasi-hydrostatic environment of
the Bridgman anvil cell. It was found that both the superconducting transition
temperature Tc and the normal state properties are very sensitive to uniaxial
stress, which leads to a shift of the valence instability pressure Pv and a
small but significant change in Tc for different orientations with respect to
the tetragonal c-axis. Coexistence of superconductivity and residual
resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling
argument for the existence of a valence-fluctuation mediated pairing
interaction at high pressure in CeCu2Si2.Comment: 12 pages, 7 figure
Experimental Quantification of Entanglement Through Heat Capacity
A new experimental realization of heat capacity as an entanglement witness
(EW) is reported. Entanglement properties of a low dimensional quantum spin
system are investigated by heat capacity measurements performed down to very
low temperatures (400mK), for various applied magnetic field values. The
experimentally extracted results for the value of heat capacity at zero field
matches perfectly with the theoretical estimates of entanglement from model
Hamiltonians. The studied sample is a spin antiferromagnetic
system which shows clear signature of quantum phase transition (QPT) at very
low temperatures when the heat capacity is varied as a function of fields at a
fixed temperature. The variation of entanglement as a function of field is then
explored in the vicinity of the quantum phase transition to capture the sudden
loss of entanglement.Comment: 8 pages, 6 figures, To be published in NJ
Possible re-entrant superconductivity in EuFe2As2 under pressure
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements
of the electrical resistivity. The antiferromagnetic spin-density-wave
transition at T_0 associated with the FeAs-layers is continuously suppressed
with increasing pressure, while the antiferromagnetic ordering temperature of
the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above
2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of
superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the
temperature \rho(T) is increasing again and exhibiting a maximum caused by the
ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant
superconductivity as it is observed in the ternary Chevrel phases or in the
rare-earth nickel borocarbides
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Interplay between superconductivity and magnetism in K-doped EuFe2As2
Superconductivity is found in 50% K-doped EuFe2As2 sample below 33 K. Our
results of electrical resistivity, magnetic susceptibility and 57Fe and 151Eu
Mossbauer spectroscopy provide clear evidence that the ordering of the Fe
moments observed at 190 K in undoped EuFe2As2 is completely suppressed in our
50% K doped sample, thus there is no coexistence between the Fe magnetic order
and the superconducting state. However, short range ordering of the Eu moments
is coexisting with the superconducting state below 15 K. A bump in the
susceptibility well below Tc as well as a slight broadening of the Fe Mossbauer
line below 15 K evidence an interplay between the Eu magnetism and the
superconducting state.Comment: 7 pages, 6 figure
Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron
The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible
Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFeAs, an Fe-pnictide superconductor parent compound
Using angle resolved photoemission it is shown that the low lying electronic
states of the iron pnictide parent compound EuFeAs are strongly
modified in the magnetically ordered, low temperature, orthorhombic state
compared to the tetragonal, paramagnetic case above the spin density wave
transition temperature. Back-folded bands, reflected in the orthorhombic/
anti-ferromagnetic Brillouin zone boundary hybridize strongly with the
non-folded states, leading to the opening of energy gaps. As a direct
consequence, the large Fermi surfaces of the tetragonal phase fragment, the low
temperature Fermi surface being comprised of small droplets, built up of
electron and hole-like sections. These high resolution ARPES data are therefore
in keeping with quantum oscillation and optical data from other undoped
pnictide parent compounds.Comment: 4 figures, 6 page
AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe_(2-x)TM_(x)As2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity
The electronic structure and physical properties of the pnictide compound
families OFeAs ( = La, Ce, Pr, Nd, Sm), FeAs ( = Ca,
Sr, Ba, Eu), LiFeAs and FeSe are quite similar. Here, we focus on the members
of the FeAs family whose sample composition, quality and single
crystal growth are better controllable compared to the other systems. Using
first principles band structure calculations we focus on understanding the
relationship between the crystal structure, charge doping and magnetism in
FeAs systems. We will elaborate on the tetragonal to
orthorhombic structural distortion along with the associated magnetic order and
anisotropy, influence of doping on the site as well as on the Fe site, and
the changes in the electronic structure as a function of pressure.
Experimentally, we investigate the substitution of Fe in
SrFeAs by other 3 transition metals, = Mn, Co, Ni.
In contrast to a partial substitution of Fe by Co or Ni (electron doping) a
corresponding Mn partial substitution does not lead to the supression of the
antiferromagnetic order or the appearance of superconductivity. Most calculated
properties agree well with the measured properties, but several of them are
sensitive to the As position. For a microscopic understanding of the
electronic structure of this new family of superconductors this structural
feature related to the Fe-As interplay is crucial, but its correct ab initio
treatment still remains an open question.Comment: 27 pages, single colum
- …
