34 research outputs found

    αEβ7 Integrin Identifies Subsets of Pro-Inflammatory Colonic CD4+ T Lymphocytes in Ulcerative Colitis.

    Get PDF
    Background and Aims The αEβ7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEβ7-E-cadherin interactions. Methods αEβ7+ and αEβ7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. Results CD4+αEβ7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEβ7- T lymphocytes. In UC, CD4+αEβ7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEβ7- lymphocytes. Additionally the CD4+αEβ7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. Conclusion αEβ7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEβ7+ T cells are pro-inflammatory and may play a role in UC pathobiology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Correction to “End Turn Leakage Reactance of Concentrated Modular Winding Stators” [Nov 08 4057-4061]

    No full text
    In the above titled paper (ibid., vol. 44, no. 11, pp. 4057-4061, Nov 08), Fig. 8 was printed incorrectly. The correct figure is presented here

    Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    No full text
    The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate

    Characterization of Tumor-immune Microenvironment by High-throughput Image Analysis of CD8 Immunohistochemistry Combined With Modified Masson’s Trichrome

    Full text link
    With the advent of checkpoint inhibitors, there is increasing need to study the dynamics of CD8+ T-cells in the tumor microenviroment. In this article, we describe a semi-automated method to quantify and interrogate spatial relationships between T-cells and collagenous stroma in human and mouse tissue samples. The assay combines CD8 immunohistochemistry with modified Masson’s trichrome. Slides are scanned and digital images are analyzed using an adjustable MATLAB algorithm, allowing for high-throughput quantification of cytotoxic T-cells and collagen. This method provides a flexible tool for unbiased quantification of T-cells and their interactions with tumor cells and tumor microenvironment in tissue samples. </jats:p

    MOSBY enables multi-omic inference and spatial biomarker discovery from whole slide images

    No full text
    Abstract The utility of deep neural nets has been demonstrated for mapping hematoxylin-and-eosin (H&E) stained image features to expression of individual genes. However, these models have not been employed to discover clinically relevant spatial biomarkers. Here we develop MOSBY (Multi-Omic translation of whole slide images for Spatial Biomarker discoverY) that leverages contrastive self-supervised pretraining to extract improved H&E whole slide images features, learns a mapping between image and bulk omic profiles (RNA, DNA, and protein), and utilizes tile-level information to discover spatial biomarkers. We validate MOSBY gene and gene set predictions with spatial transcriptomic and serially-sectioned CD8 IHC image data. We demonstrate that MOSBY-inferred colocalization features have survival-predictive power orthogonal to gene expression, and enable concordance indices highly competitive with survival-trained multimodal networks. We identify and validate (1) an ER stress-associated colocalization feature as a chemotherapy-specific risk factor in lung adenocarcinoma, and (2) the colocalization of T effector cell vs cysteine signatures as a negative prognostic factor in multiple cancer indications. The discovery of clinically relevant biologically interpretable spatial biomarkers showcases the utility of the model in unraveling novel insights in cancer biology as well as informing clinical decision-making

    Bone Health and Bone-Targeted Therapies for Prostate Cancer: ASCO Endorsement of a Cancer Care Ontario Guideline

    Full text link
    PURPOSE In 2017, Cancer Care Ontario’s Program in Evidence-Based Care released the Bone Health and Bone-Targeted Therapies for Prostate Cancer guideline. This guideline included recommendations across a relatively broad clinical spectrum within prostate cancer. Topics addressed ranged from management of osteoporotic fracture risk in nonmetastatic disease to management of men with castration-resistant prostate cancer metastatic to bone. ASCO has a policy and set of procedures for endorsing clinical practice guidelines that have been developed by other professional organizations. METHODS The Bone Health and Bone-Targeted Therapies for Prostate Cancer guideline was reviewed for developmental rigor by methodologists. An ASCO Expert Panel then reviewed the content and the recommendations. RESULTS The ASCO Expert Panel determined that the recommendations from the Bone Health and Bone-Targeted Therapies for Prostate Cancer guideline were clear, thorough, and based on the most relevant scientific evidence. ASCO wholly endorses the Bone Health and Bone-Targeted Therapies for Prostate Cancer guideline. RECOMMENDATIONS The ASCO Expert Panel endorses all the original guideline recommendations as written and offers a series of discussion points to guide practice for clinicians as they manage bone-related risks within this patient population. </jats:sec
    corecore