46 research outputs found

    Getting and Keeping Health Coverage for Low-Income Californians: A Guide for Advocates

    Get PDF
    Western Center's "Getting and Keeping Health Care Coverage for Low-Income Californians: A Guide for Advocates", provides California advocates -- legal services attorneys, enrollment counselors, health care workers, community organizers and others -- with the relevant statutes, regulations, and guidance needed to help their clients access health care coverage. Our hope is that this guide provides those in the field with the necessary support needed to help low-income Californians determine eligibility, and enroll and retain coverage

    Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review

    Get PDF
    Environmental applications of nanoparticles (NP) increasingly result in widespread NP distribution within porous media where they are subject to various concurrent transport mechanisms including irreversible deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically conducted at small scale, and theoretical mechanistic modeling of particle transport in porous media faces challenges when considering the simultaneous effects of transport mechanisms. Continuum modeling approaches, in contrast, are scalable across various scales ranging from column experiments to aquifer. They have also been able to successfully describe the simultaneous occurrence of various transport mechanisms of NP in porous media such as blocking/straining or agglomeration/deposition/detachment. However, the diversity of model equations developed by different authors and the lack of effective approaches for their validation present obstacles to the successful robust application of these models for describing or predicting NP transport phenomena. This review aims to describe consistently all the important NP transport mechanisms along with their representative mathematical continuum models as found in the current scientific literature. Detailed characterizations of each transport phenomenon in regards to their manifestation in the column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile (RCP), are presented to facilitate future interpretations of BTCs and RCPs. The review highlights two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great importance in controlling the fate and transport of NP in the subsurface media yet have been widely neglected in many existing modeling studies. A critical limitation of the continuum modeling approach is the number of parameters used upon application to larger scales and when a series of transport mechanisms are involved. We investigate the use of simplifying assumptions, such as the equilibrium assumption, in modeling the attachment/detachment mechanisms within a continuum modelling framework. While acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic (process) basis, we found that its use as a description of dynamic deposition behavior in a continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, we show that in two dimensional (2-D) continuum models the modeling efficiency based on the Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant reduction in model performance. This is because fewer parameters are needed for the equilibrium model compared to the kinetic model. Two major transport regimes are identified in the transport of NP within porous media. The first regime is characterized by higher particle-surface attachment affinity than particle-particle attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, and physical retention. The second regime is characterized by the domination of particle-particle attachment tendency over particle-surface affinity. In this regime although physicochemical filtration as well as straining may still be operative, ripening is predominant together with agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and transport is necessary since certain combinations of concurrent transport phenomena leading to large migration distances are possible in either case

    A Comparative Study of the Second-Order Hydrophobic Moments for Globular Proteins: The Consensus Scale of Hydrophobicity and the CHARMM Partial Atomic Charges

    Get PDF
    In this paper, the second-order hydrophobic moment for fifteen globular proteins in 150 nonhomologous protein chains was performed in a comparative study involving two sets of hydrophobicity: one selected from the consensus scale and the other derived from the CHARMM partial atomic charges. These proteins were divided into three groups, based on their number of residues (N) and the asphericity (δ). Proteins in Group I were spherical and those in Groups II and III were prolate. The size of the proteins is represented by the mean radius of gyration (Rg ), which follows the Flory scaling law, Rg ∝ Nν. The mean value of v was 0.35, which is similar to a polymer chain in a poor solvent. The spatial distributions of the second-order moment for each of the proteins, obtained from the two sets of hydrophobicity, were compared using the Pearson correlation coefficient; the results reveal that there is a strong correlation between the two data sets for each protein structure when the CHARMM partial atomic charges, |qi| ≥ 0.3, assigned for polar atoms, are used. The locations at which these distributions vanish and approach a negative value are at approximately 50% of the percentage of solvent accessibility, indicating that there is a transition point from hydrophobic interior to hydrophilic exterior in the proteins. This may suggest that there is a position for the proteins to determine the residues at exposed sites beyond this range

    Structural analysis of dextran-based hydrogels obtained chemoenzymatically

    Get PDF
    This work reports the results of structural analysis in novel dextran-acrylate (dexT70-VA) hydrogels generated chemoenzymatically. Porous structure as well as hydrogel surface and interior morphologies were evaluated by mercury intrusion porosimetry (MIP), nitrogen adsorption (NA), and scanning electron microscopy (SEM) analyses, as a function of the degree of substitution (DS), and initial water content used in the preparation of the hydrogel. MIP analysis showed that the overall networks were clearly macroporous with pore sizes ranging from 0.065 to 10 mum. As expected, the average pore size decreased as DS increased and as initial water content decreased. Moreover, the porosity values ranged from 75 up 90%, which shows that these hydrogels present an interconnected pore structure. Nitrogen adsorption analyses showed that the specific surface area of dexT70-VA hydrogels increased either by increasing the DS or by decreasing the initial water content of the hydrogel. SEM results revealed that the surface of hydrogels with lower DS presented either a porous structure or a polymeric ldquoskinrdquo covering the pores, whereas hydrogels with higher DS were totally porous. Furthermore, the interior morphology varied according to the DS and the initial water content of the hydrogels. Finally, the average pore size was also determined from the swelling of hydrogel using a theoretical model developed by Flory-Rehner. The comparison of the SEM and MIP results with the ones obtained by the equilibrium swelling theory of Flory-Rehner shows that this approach highly underestimates the average pore size. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 200

    Enzymatic synthesis of dextran-containing hydrogels

    Get PDF
    Dextran, a natural glucose-containing polysaccharide, has been acylated by Proleather FG-F and lipase AY, a protease and lipase from Bacillus sp. and Candida rugosa, respectively, in anhydrous dimethylsulfoxide in the presence of vinyl acrylate (VA). The efficiency of the reaction in the presence of Proleather FG-F and the isolated yields were ca. 71% and 45%, respectively. Dextran derivatized with VA (dexT70-VA) was characterized by gel permeation chromatography and its structure was established by NMR indicating two positional isomers at the 2 and 3 positions on the glucose moieties in equal amounts. Furthermore, the dextran glucopyranose residues were mono-substituted. The benefits of the biocatalytic synthesis of dextran acrylates was demonstrated using 4-dimethylaminopyridine as a chemical catalyst. Gels were prepared by free radical polymerization of aqueous solutions of dexT70-VA with different degrees of substitution and monomer concentrations. Intermolecular linkages and physical entanglements are predominantly formed by concentrated solutions, however, a part of the acrylate groups did not react. Gel pore sizes were calculated from swelling experiments and ranged from ca. 18 to 182 Å.http://www.sciencedirect.com/science/article/B6TWB-45XT3YK-4/1/92f52d9a249926d04995abe531bd0b1
    corecore