10 research outputs found

    Up-Regulation of Activating Transcription Factor-5 Suppresses SAP Expression to Activate T Cells in Hemophagocytic Syndrome Associated with Epstein-Barr Virus Infection and Immune Disorders

    No full text
    Hemophagocytic syndrome (HPS) is a fatal, pro-inflammatory cytokine disorder that is associated with viral infections and immune disorders. Previously, we demonstrated that Epstein-Barr virus latent membrane protein-1 (LMP-1) could down-regulate the SAP gene, enhancing Th1 cytokine secretion in T cells and leading to HPS. The exact mechanism of SAP gene regulation by LMP-1 remains to be clarified. In this study, using cDNA microarray analysis, we identified ATF5 as the candidate transcriptional repressor for SAP expression in LMP-1-expressing T cells. LMP-1 up-regulated ATF5 via TRAF2,5/NF-κB signals to suppress SAP gene expression. Reporter assays and electrophoretic mobility shift assays revealed that ATF5 bound differentially to two sites of the SAP promoter. In resting T cells, ATF5 bound predominantly to the high-affinity site in the −81 to −74 region while additionally binding to the low-affinity site at −305 to −296 in LMP-1-expressing T cells. Such binding subsequently disrupted the transcription of the SAP gene. At the same time, Th1 cytokine secretion was enhanced. This phenomenon was also observed in conditions such as ATF5 overexpression, phytohemagglutinin stimulation of primary T cells, and ligand engagement of T-cell lines. Therefore, the down-regulation of the SAP gene by ATF5 may represent a common mechanism for the pathogenesis of HPS that is associated with either Epstein-Barr virus infection or immune disorders with dysregulated T-cell activation

    Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler’s virus–infected mice

    No full text
    The mechanisms underlying the initiation of virus-induced autoimmune disease are not well understood. Theiler’s murine encephalomyelitis virus–induced demyelinating disease (TMEV-IDD), a mouse model of multiple sclerosis, is initiated by TMEV-specific CD4(+) T cells targeting virally infected central nervous system–resident (CNS-resident) antigen-presenting cells (APCs), leading to chronic activation of myelin epitope–specific CD4(+) T cells via epitope spreading. Here we show that F4/80(+), I-A(s+), CD45(+) macrophages/microglia isolated from the CNS of TMEV-infected SJL mice have the ability to endogenously process and present virus epitopes at both acute and chronic stages of the disease. Relevant to the initiation of virus-induced autoimmune disease, only CNS APCs isolated from TMEV-infected mice with preexisting myelin damage, not those isolated from naive mice or mice with acute disease, were able to endogenously present a variety of proteolipid protein epitopes to specific Th1 lines. These results offer a mechanism by which localized virus-induced, T cell–mediated inflammatory myelin destruction leads to the recruitment/activation of CNS-resident APCs that can process and present endogenous self epitopes to autoantigen-specific T cells, and thus provide a mechanistic basis by which epitope spreading occurs
    corecore