282 research outputs found
A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis
Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human primates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination.
In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 μg (high dose) or 100 μg (low dose) DNA prime (day 0) and 1 × 108 pfu MVA boost (day 28) was shown to be safe and showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the type-1 pro-inflammatory cytokine IFN-γ than controls in whole blood assays (WBA) stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases in IFN-γ in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls demonstrating an absence of Th2/Treg response, as expected in the absence of in vivo restimulation or natural/experimental challenge with Leishmania.
These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase cellular immune responses, consistent with superior potential for protective vaccine immunogenicity of DNA/MVA TRYP over LACK
CXCR1 and SLC11A1 polymorphisms affect susceptibility to cutaneous leishmaniasis in Brazil: a case-control and family-based study.
BACKGROUND: L. braziliensis causes cutaneous (CL) and mucosal (ML) leishmaniasis. Wound healing neutrophil (PMN) and macrophage responses made following the bite of the vector sand fly contribute to disease progression in mice. To look at the interplay between PMN and macrophages in disease progression in humans we asked whether polymorphisms at genes that regulate their infiltration or function are associated with different clinical phenotypes. Specifically, CXCR1 (IL8RA) and CXCR2 (IL8RB) are receptors for chemokines that attract PMN to inflammatory sites. They lie 30-260 kb upstream of SLC11A1, a gene known primarily for its role in regulating macrophage activation, resistance to leishmaniasis, and wound healing responses in mice, but also known to be expressed in PMN, macrophages and dendritic cells. METHODS: Polymorphic variants at CXCR1, CXCR2 and SLC11A1 were analysed using Taqman or ABI fragment separation technologies in cases (60 CL; 60 ML), unrelated controls (n = 120), and multicase families (104 nuclear families; 88 ML, 250 CL cases) from Brazil. Logistic regression analysis, family-based association testing (FBAT) and haplotype analysis (TRANSMIT) were performed. RESULTS: Case-control analysis showed association between the common C allele (OR 2.38; 95% CI 1.23-4.57; P = 0.009) of CXCR1_rs2854386 and CL, supported by family-based (FBAT; Z score 2.002; P = 0.045) analysis (104 nuclear families; 88 ML, 250 CL cases). ML associated with the rarer G allele (Z score 1.999; P = 0.046). CL associated with a 3' insertion/deletion polymorphism at SLC11A1 (Z score 2.549; P = 0.011). CONCLUSIONS: The study supports roles for CXCR1 and SLC11A1 in the outcome of L. braziliensis infection in humans. Slc11a1 does not influence cutaneous lesion development following needle injection of Leishmania in mice, suggesting that its role here might relate to the action of PMN, macrophage and/or dendritic cells in the wound healing response to the sand fly bite. Together with the CXCR1 association, the data are consistent with hypotheses relating to the possible role of PMN in initiation of a lesion following the delivery of parasites via the sand fly bite. Association of ML with the rare derived G allele suggests that PMN also have an important positive role to play in preventing this form of the disease.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Solute carrier 11a1 (Slc11a1; formerly Nramp1) regulates metabolism and release of iron acquired by phagocytic, but not transferrin-receptor-mediated, iron uptake
Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India.
BACKGROUND: IL8RA and IL8RB, encoded by CXCR1 and CXCR2, are receptors for interleukin (IL)-8 and other CXC chemokines involved in chemotaxis and activation of polymorphonuclear neutrophils (PMN). Variants at CXCR1 and CXCR2 have been associated with susceptibility to cutaneous and mucocutaneous leishmaniasis in Brazil. Here we investigate the role of CXCR1/CXCR2 in visceral leishmaniasis (VL) in India. METHODS: Three single nucleotide polymorphisms (SNPs) (rs4674259, rs2234671, rs3138060) that tag linkage disequilibrium blocks across CXCR1/CXCR2 were genotyped in primary family-based (313 cases; 176 nuclear families; 836 individuals) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between CXCR1/CXCR2 variants and VL. Quantitative RT/PCR was used to compare CXCR1/CXCR2 expression in mRNA from paired splenic aspirates taken before and after treatment from 19 VL patients. RESULTS: Family-based analysis using FBAT showed association between VL and SNPs CXCR1_rs2234671 (Z-score = 2.935, P = 0.003) and CXCR1_rs3138060 (Z-score = 2.22, P = 0.026), but not with CXCR2_rs4674259. Logistic regression analysis of the case-control data under an additive model of inheritance showed association between VL and SNPs CXCR2_rs4674259 (OR = 1.15, 95%CI = 1.01-1.31, P = 0.027) and CXCR1_rs3138060 (OR = 1.25, 95%CI = 1.02-1.53, P = 0.028), but not with CXCR1_rs2234671. The 3-locus haplotype T_G_C across these SNPs was shown to be the risk haplotype in both family- (TRANSMIT; P = 0.014) and population- (OR = 1.16, P = 0.028) samples (combined P = 0.002). CXCR2, but not CXCR1, expression was down regulated in pre-treatment compared to post-treatment splenic aspirates (P = 0.021). CONCLUSIONS: This well-powered primary and replication genetic study, together with functional analysis of gene expression, implicate CXCR2 in determining outcome of VL in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
No evidence for association between SLC11A1 and visceral leishmaniasis in India.
BACKGROUND: SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. METHODS: Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). RESULTS: No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. CONCLUSIONS: This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Human genetics of leishmania infections.
Identifying genetic risk factors for parasitic infections such as the leishmaniases could provide important leads for improved therapies and vaccines. Until recently most genetic studies of human leishmaniasis were underpowered and/or not replicated. Here, we focus on recent genome-wide association studies of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). For VL, analysis across 2287 cases and 2692 controls from three cohorts identified a single major peak of genome-wide significance (Pcombined = 2.76 × 10-17) at HLA-DRB1-HLA-DQA1. HLA-DRB1*1501 and DRB1*1404/DRB1*1301 were the most significant protective versus risk alleles, respectively, with specific residues at amino acid positions 11 and 13 unique to protective alleles. Epitope-binding studies showed higher frequency of basic AAs in DRB1*1404-/*1301-specific epitopes compared to hydrophobic and polar AAs in DRB1*1501-specific epitopes at anchor residues P4 and P6 which interact with residues at DRB1 positions 11 and 13. For CL, genome-wide significance was not achieved in combined analysis of 2066 cases and 2046 controls across 2 cohorts. Rather, multiple top hits at P < 5 × 10-5 were observed, amongst which IFNG-AS1 was of specific interest as a non-coding anti-sense RNA known to influence responses to pathogens by increasing IFN-γ secretion. Association at LAMP3 encoding dendritic cell lysosomal associated membrane protein 3 was also interesting. LAMP3 increases markedly upon activation of dendritic cells, localizing to the MHC Class II compartment immediately prior to translocation of Class II to the cell surface. Together these GWAS results provide firm confirmation for the importance of antigen presentation and the regulation of IFNγ in determining the outcome of Leishmania infections
Y Chromosome Lineage- and Village-Specific Genes on Chromosomes 1p22 and 6q27 Control Visceral Leishmaniasis in Sudan
Familial clustering and ethnic differences suggest that visceral leishmaniasis caused by Leishmania donovani is under genetic control. A recent genome scan provided evidence for a major susceptibility gene on Chromosome 22q12 in the Aringa ethnic group in Sudan. We now report a genome-wide scan using 69 families with 173 affected relatives from two villages occupied by the related Masalit ethnic group. A primary ten-centimorgan scan followed by refined mapping provided evidence for major loci at 1p22 (LOD score 5.65; nominal p = 1.72 × 10(−7); empirical p < 1 × 10(−5); λ(S) = 5.1) and 6q27 (LOD score 3.74; nominal p = 1.68 × 10(−5); empirical p < 1 × 10(−4); λ(S) = 2.3) that were Y chromosome–lineage and village-specific. Neither village supported a visceral leishmaniasis susceptibility gene on 22q12. The results suggest strong lineage-specific genes due to founder effect and consanguinity in these recently immigrant populations. These chance events in ethnically uniform African populations provide a powerful resource in the search for genes and mechanisms that regulate this complex disease
MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls
Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10−5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects
Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
Publisher Correction: Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
- …
