11 research outputs found
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
\ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p<0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
Background
Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.
Methods
People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).
Findings
Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases.
Interpretation
Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand.
Funding
RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
Quantifying association of early proteinuria and estimated glomerular filtration rate changes with long-term kidney failure in C3 glomerulopathy and immune-complex membranoproliferative glomerulonephritis using the United Kingdom RaDaR Registry
\ua9 2025 International Society of Nephrology. Introduction: C3 glomerulopathy (C3G) and immune-complex membranoproliferative glomerulonephritis (IC-MPGN) are rare disorders that frequently result in kidney failure over the long-term. Presently, there are no disease-specific treatments approved for these disorders, although there is much interest in the therapeutic potential of complement inhibition. However, the limited duration and necessarily small size of controlled trials means there is a need to quantify how well short-term changes in estimated glomerular filtration rate (eGFR) and proteinuria predict the clinically important outcome of kidney failure. Methods: We address this using longitudinal data from the UK Registry of Rare Kidney Diseases (RaDaR) involving retrospective and prospective data collection with linkage to hospital laboratories via automated feeds of 371 patients. Analyses of kidney survival were conducted using Kaplan–Meier and Cox regression with eGFR slope estimated using linear mixed models. Results: In a median of 11.0 (inter quartile range 7.4-15.1) years follow-up, 148 patients (40%) reached kidney failure. There was no significant difference in progression to kidney failure between C3G and IC-MPGN groups. Baseline urine protein-creatinine ratio (UPCR), although high, was not associated with kidney failure in either group. Two-year eGFR slope had a modest association with kidney failure. In contrast, both 20%‒50% and 50 mg/mmol reductions in UPCR between 0-12 months were associated with lower kidney failure risk in both groups. Notably, those with a UPCR under 100 mg/mmol at 12 months had a substantially lower risk of kidney failure (hazard ratio 0.10 (95% confidence interval 0.03-0.30). Conclusions: Overall, proteinuria a short time after diagnosis is strongly associated with long-term outcomes and a UPCR under 100 mg/mmol at one year is associated with a substantially lower kidney failure risk
Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort
\ua9 2024. Introduction: The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world\u27s largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR. Methods: RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census. Results: We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001). Conclusion: We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases
Quantifying association of early proteinuria and estimated glomerular filtration rate changes with long-term kidney failure in C3 glomerulopathy and immune-complex membranous proliferative glomerulonephritis using the United Kingdom RaDaR Registry
Introduction
C3 glomerulopathy (C3G) and immune-complex membranous proliferative glomerulonephritis (IC-MPGN) are rare disorders that frequently result in kidney failure over the long-term. Presently, there are no disease-specific treatments approved for these disorders, although there is much interest in the therapeutic potential of complement inhibition. However, the limited duration and necessarily small size of controlled trials means there is a need to quantify how well short-term changes in estimated glomerular filtration rate (eGFR) and proteinuria predict the clinically important outcome of kidney failure.
Methods
We address this using longitudinal data from the UK Registry of Rare Kidney Diseases (RaDaR) involving retrospective and prospective data collection with linkage to hospital laboratories via automated feeds of 371 patients. Analyses of kidney survival were conducted using Kaplan–Meier and Cox regression with eGFR slope estimated using linear mixed models.
Results
In a median of 11.0 (inter quartile range 7.4-15.1) years follow-up, 148 patients (40%) reached kidney failure. There was no significant difference in progression to kidney failure between C3G and IC-MPGN groups. Baseline urine protein-creatinine ratio (UPCR), although high, was not associated with kidney failure in either group. Two-year eGFR slope had a modest association with kidney failure. In contrast, both 20%‒50% and 50 mg/mmol reductions in UPCR between 0-12 months were associated with lower kidney failure risk in both groups. Notably, those with a UPCR under 100 mg/mmol at 12 months had a substantially lower risk of kidney failure (hazard ratio 0.10 (95% confidence interval 0.03-0.30).
Conclusions
Overall, proteinuria a short time after diagnosis is strongly associated with long-term outcomes and a UPCR under 100 mg/mmol at one year is associated with a substantially lower kidney failure risk
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
Background
Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.
Methods
People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).
Findings
Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases.
Interpretation
Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand
Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort
Introduction
The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world’s largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR.
Methods
RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census.
Results
We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001).
Conclusion
We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases
Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort
Introduction: The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world’s largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR. Methods: RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census. Results: We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001). Conclusion: We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases
Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort
Introduction: The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world's largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR. Methods: RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census. Results: We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001). Conclusion: We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p
Background
Methods
Findings
Interpretation
Funding</p
