689 research outputs found
Risk assessment applied to comsumer products with reference to CE marking machines for use at work
New Approach’ Directives now govern the health and safety of most products whether destined for workplace or domestic use. These Directives have been enacted into UK law by various specific legislation principally relating to work equipment, machinery and consumer products. This research investigates whether the risk assessment approach used to ensure the safety of machinery may be applied to consumer products. Crucially, consumer products are subject to the Consumer Protection Act (CPA) 1987, where there is no direct reference to “assessing risk”. This contrasts with the law governing the safety of products used in the workplace, where risk assessment underpins the approach. New Approach Directives are supported by European harmonised standards, and in the case of machinery, further supported by the risk assessment standard, EN 1050. The system regulating consumer product safety is discussed, its key elements identified and a graphical model produced. This model incorporates such matters as conformity assessment, the system of regulation, near miss and accident reporting. A key finding of the research is that New Approach Directives have a common feature of specifying essential performance requirements that provide a hazard prompt-list that can form the basis for a risk assessment (the hazard identification stage). Drawing upon 272 prosecution cases, and with thirty examples examined in detail, this research provides evidence that despite the high degree of regulation, unsafe consumer products still find their way onto the market. The research presents a number of risk assessment tools to help Trading Standards Officers (TSOs) prioritise their work at the initial inspection stage when dealing with subsequent enforcement action
Analysis of and with QCD sum rules
In this article, we calculate the masses and the pole residues of the
heavy baryons and with the QCD
sum rules. The numerical values (or
) and (or ) are in good agreement
with the experimental data.Comment: 18 pages, 18 figures, slight revisio
Hydrodynamics of thermal granular convection
A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular
convection, recently predicted in molecular dynamic simulations and observed in
experiment. The limit of a dilute flow is considered. The problem is fully
described by three scaled parameters. The convection occurs via a supercritical
bifurcation, the inelasticity of the collisions being the control parameter.
The theory is expected to be valid for small Knudsen numbers and nearly elastic
grain collisions.Comment: 4 pages, 4 EPS figures, some details adde
Long-time asymptotics of the long-range Emch-Radin model
The long-time asymptotic behavior is studied for a long-range variant of the
Emch-Radin model of interacting spins. We derive upper and lower bounds on the
expectation values of a class of observables. We prove analytically that the
time scale at which the system relaxes to equilibrium diverges with the system
size N, displaying quasistationary nonequilibrium behavior. This finding
implies that, for large enough N, equilibration will not be observed in an
experiment of finite duration.Comment: 12 pages, 2 figures. Compared to the published version, a 1/2 has
been corrected in Eq. (9) and subsequent equations; the modifications are
insubstantial and leave the main results of the article unaltered. arXiv
admin note: substantial text overlap with arXiv:1103.083
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
Lady Gaga as (dis)simulacrum of monstrosity
Lady Gaga’s celebrity DNA revolves around the notion of monstrosity, an extensively
researched concept in postmodern cultural studies. The analysis that is offered in this
paper is largely informed by Deleuze and Guattari’s notion of monstrosity, as well as
by their approach to the study of sign-systems that was deployed in A Thousand
Plateaus. By drawing on biographical and archival visual data, with a focus on the
relatively underexplored live show, an elucidation is afforded of what is really monstrous
about Lady Gaga. The main argument put forward is that monstrosity as sign
seeks to appropriate the horizon of unlimited semiosis as radical alterity and openness
to signifying possibilities. In this context it is held that Gaga effectively delimits her
unique semioscape; however, any claims to monstrosity are undercut by the inherent
limits of a representationalist approach in sufficiently engulfing this concept. Gaga is
monstrous for her community insofar as she demands of her fans to project their
semiosic horizon onto her as a simulacrum of infinite semiosis. However, this simulacrum
may only be evinced in a feigned manner as a (dis)simulacrum. The analysis of
imagery from seminal live shows during 2011–2012 shows that Gaga’s presumed
monstrosity is more akin to hyperdifferentiation as simultaneous employment of
heterogeneous and potentially dissonant inter pares cultural representations. The article
concludes with a problematisation of audience effects in the light of Gaga’s adoption of
a schematic and post-representationalist strategy in the event of her strategy’s emulation
by competitive artists
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
The evolution of language: a comparative review
For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
- …
