1,440 research outputs found
Missed medical appointments during shifts to and from daylight saving time
Transitions into and out of Daylight Saving Time (DST) can provide insights into how a minor change to a regular sleep–wake cycle can inadvertently affect health. We examined the relationship between DST and missed medical appointments. Using a large dataset, the proportion of missed appointments were examined prior and post spring and autumn clock changes. As predicted, the number of missed medical appointments significantly increased following the spring (forward) clock change and the week of the clock change. This trend was reversed following the transition out of DST. The implications of scheduling appointments around DST to increase attendance are discussed
Initial conditions, Discreteness and non-linear structure formation in cosmology
In this lecture we address three different but related aspects of the initial
continuous fluctuation field in standard cosmological models. Firstly we
discuss the properties of the so-called Harrison-Zeldovich like spectra. This
power spectrum is a fundamental feature of all current standard cosmological
models. In a simple classification of all stationary stochastic processes into
three categories, we highlight with the name ``super-homogeneous'' the
properties of the class to which models like this, with , belong. In
statistical physics language they are well described as glass-like. Secondly,
the initial continuous density field with such small amplitude correlated
Gaussian fluctuations must be discretised in order to set up the initial
particle distribution used in gravitational N-body simulations. We discuss the
main issues related to the effects of discretisation, particularly concerning
the effect of particle induced fluctuations on the statistical properties of
the initial conditions and on the dynamical evolution of gravitational
clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on
Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G.
Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in
Proceedings of 9th Course on Astrofundamental Physics, International School
D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st
From the stable to the exotic: clustering in light nuclei
A great deal of research work has been undertaken in alpha-clustering study
since the pioneering discovery of 12C+12C molecular resonances half a century
ago. Our knowledge on physics of nuclear molecules has increased considerably
and nuclear clustering remains one of the most fruitful domains of nuclear
physics, facing some of the greatest challenges and opportunities in the years
ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is
investigated. Various approaches of the superdeformed and hyperdeformed bands
associated with quasimolecular resonant structures are presented. Evolution of
clustering from stability to the drip-lines is examined: clustering aspects
are, in particular, discussed for light exotic nuclei with large neutron excess
such as neutron-rich Oxygen isotopes with their complete spectroscopy.Comment: 15 pages, 5 figures, Presented at the International Symposium on "New
Horizons in Fundamental Physics - From Neutrons Nuclei via Superheavy
Elements and Supercritical Fields to Neutron Stars and Cosmic Rays" held at
Makutsi Safari Farm, South Africa, December 23-29, 2015. arXiv admin note:
substantial text overlap with arXiv:1402.6590, arXiv:1303.0960,
arXiv:1408.0684, arXiv:1011.342
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Evaluation of genetic isolation within an island flora reveals unusually widespread local adaptation and supports sympatric speciation
It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS
The ep -> e'pi^+n reaction was studied in the first and second nucleon
resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS
detector at Thomas Jefferson National Accelerator Facility. For the first time
the absolute cross sections were measured covering nearly the full angular
range in the hadronic center-of-mass frame. The structure functions sigma_TL,
sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by
fitting the phi-dependence of the measured cross sections, and were compared to
the MAID and Sato-Lee models.Comment: Accepted for publication in PR
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
Exclusion and reappropriation: Experiences of contemporary enclosure among children in three East Anglian schools
Transformations of the landscapes which children inhabit have significant impacts on their lives; yet, due to the limited economic visibility of children’s relationships with place, they have little stake in those transformations. Their experience, therefore, illustrates in an acute way the experience of contemporary enclosure as a mode of subordination. Following fieldwork in three primary schools in South Cambridgeshire, UK, we offer an ethnographic account of children’s experiences of socio-spatial exclusion. Yet, we suggest that such exclusion is by no means an end-point in children’s relationships with place. Challenging assumptions that children are disconnected from nature, we argue that through play and imaginative exploration of their environments, children find ways to rebuild relationships with places from which they find themselves excluded. This is the author accepted manuscript. The final version is available from SAGE via http://dx.doi.org/10.1177/026377581664194
- …
