4,175 research outputs found
Frequency and Voltage Dependence of Series Resistance in a Solar Cell
While admittance measurements of solar cells are typically conducted in reverse or at zero bias, and analyzed using the depletion approximation, the operating point of the solar cell is in forward bias, and the series resistance is often estimated using IV curves with a high forward current. In this mode, the device is no longer in the depletion regime, and the large number of injected minority carriers alters the transport properties significantly. In our Cu(In,Ga)Se2 devices, we measure negative values of capacitance at high forward bias, which may be linked to injected minority carriers and carrier transport limitations, although our calculations of capacitance may also be influenced by series resistance. In this study, we compare AC and DC measurements of voltage dependent series resistance to try to better understand the negative capacitance signal
Role of Contacts in Capacitance Measurements of Solar Cells
The electronic properties of low cost, thin-film solar cells are complicated by the non-ideal nature of the semiconductor layers. Typically, the fundamental electronic properties of such materials are evaluated using current-voltage and capacitance-voltage measurements. However, in these devices, it is common for the back contact to be non-ohmic. We are exploring the impact of such a back contact on the outcome of standard capacitance-based characterization techniques. We compare computer models of capacitance response with measurements of simple model electronic circuits and of solar cell devices
Exploring the Electrical Properties of Twisted Bilayer Graphene
Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential 20mV higher than that of monolayer graphene and 35 mV below bilayer graphene
Effect of Ga Content on Defect States in CuIn\u3csub\u3e1-x\u3c/sub\u3eGa\u3csub\u3ex\u3c/sub\u3eSe\u3csub\u3e2\u3c/sub\u3e Photovoltaic Devices
Defects in the band gap of CuIn1-xGaxSe2 have been characterized using transient photocapacitance spectroscopy. The measured spectra clearly show response from a band of defects centered around 0.8 eV from the valence band edge as well as an exponential distribution of band tail states. Despite Ga contents ranging from Ga/(In+Ga)=0.0 to 0.8, the defect bandwidth and its position relative to the valence band remain constant. This defect band may act as an important recombination center, contributing to the decrease in device efficiency with increasing Ga content
Lower-rim ferrocenyl substituted calixarenes: new electrochemical sensors for anions
New ferrocene substituted calix[4 and 5]arenes have been prepared and the crystal structure of a lower-rim substituted bis ferrocene calix[4]arene (7) has been elucidated. The respective ferrocene/ferrocenium redox-couples of compounds 6 (a calix[4]arene tetra ferrocene amide) and 8 (a calix[5]arene pentaferrocene amide) are shown to be significantly cathodically perturbed in the presence of anions by up to 160 mV in the presence of dihydrogen phosphate
Scanning Capacitance Spectroscopy on n\u3csup\u3e+\u3c/sup\u3e-p Asymmetrical Junctions in Multicrystalline Si Solar Cells
We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in the literature. These distinctive spectra are due to uneven carrier-flow from both the n- and p-sides. Our results contribute significantly to the SCS study on asymmetrical junctions
No Vertical Visual Field Asymmetry in Online Control: Evidence from Reaching in Depth
We sought to determine whether a putative lower-visual field (loVF) advantage for projections to the visuomotor networks of the dorsal visual pathway influences online reaching control. Participants reached to 3-dimensional depth targets presented in the loVF and upper-visual field (upVF) in binocular and monocular visual conditions, and when online vision was available (i.e., closed-loop) or unavailable (i.e., open-loop). To examine the degree to which responses were controlled online we computed the proportion of variance (R2) explained by the spatial position of the limb at distinct stages in the reaching trajectory relative to a response’s ultimate movement endpoint. Results showed that binocular and closed-loop reaches exhibited shorter movement times and more online corrections (i.e., smaller R2 values) than their monocular and open-loop counterparts. Notably, however, loVF and upper-visual field reaches exhibited equivalent performance metrics across all experimental conditions. Accordingly, results provide no evidence of a loVF advantage for online reaching control to 3-dimensional targets
Developing an Intervention Toolbox for the Common Health Problems in the Workplace
Development of the Health ↔ Work Toolbox is described. The toolbox aims to reduce the workplace impact of common health problems (musculoskeletal, mental health, and stress complaints) by focusing on tackling work-relevant symptoms. Based on biopsychosocial principles this toolbox supplements current approaches by occupying the zone between primary prevention and healthcare. It provides a set of evidence-informed principles and processes (knowledge + tools) for tackling work-relevant common health problems. The toolbox comprises a proactive element aimed at empowering line managers to create good jobs, and a ‘just in time’ responsive element for supporting individuals struggling with a work-relevant health problem. The key intention is helping people with common health problems to maintain work participation. The extensive conceptual and practical development process, including a comprehensive evidence review, produced a functional prototype toolbox that is evidence based and flexible in its use. End-user feedback was mostly positive. Moving the prototype to a fully-fledged internet resource requires specialist design expertise. The Health ↔ Work Toolbox appears to have potential to contribute to the goal of augmenting existing primary prevention strategies and healthcare delivery by providing a more comprehensive workplace approach to constraining sickness absence
Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ α-1) and profilin 2
Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic syndrome which ultimately leads to end stage renal failure (ESRF). Mutations in inverted formin 2 (INF2), a member of the formin family of actin-regulating proteins, have recently been associated with a familial cause of nephrotic syndrome characterized by FSGS. INF2 is a unique formin that can both polymerize and depolymerize actin filaments. How mutations in INF2 lead to disease is unknown. In the present study, we show that three mutations associated with FSGS, E184K, S186P and R218Q, reduce INF2 auto-inhibition and increase association with monomeric actin. Furthermore using a combination of GFP–INF2 expression in human podocytes and GFP-Trap purification coupled with MS we demonstrate that INF2 interacts with profilin 2 and the F-actin capping protein, CapZ α-1. These interactions are increased by the presence of the disease causing mutations. Since both these proteins are involved in the dynamic turnover and restructuring of the actin cytoskeleton these changes strengthen the evidence that aberrant regulation of actin dynamics underlies the pathogenesis of disease
- …
