1,032 research outputs found
Value of hydroalcoholic treatment of rapeseed for oil extraction and protein enrichment☆
This study investigated alternative solvents: ethanol and isopropanol, to replace hexane and enhance the quality and value of oil and meal. Rapeseed oil extraction was carried out using ethanol (92 wt.% or 96 wt.%), isopropanol (84 wt.% or 88 wt.%) or hexane (as reference). Results show that hydroalcoholic extraction increased meal protein content by 13% compared to hexane extraction, but without significant influence of alcohol and water content. However, increasing water content improved glucosinolate extractability. Isopropanol 84 wt.% eliminated most glucosinolates from the seeds, decreasing glucosinolate concentration by 49–73% compared to meals extracted by the other alcohols
A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics
Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge
Malic enzyme 1 absence in synovial sarcoma shifts antioxidant system dependence and increases sensitivity to ferroptosis induction with ACXT-3102
PURPOSE: To investigate the metabolism of synovial sarcoma (SS) and elucidate the effect of malic enzyme 1 absence on SS redox homeostasis.
EXPERIMENTAL DESIGN: ME1 expression was measured in SS clinical samples, SS cell lines, and tumors from an SS mouse model. The effect of ME1 absence on glucose metabolism was evaluated utilizing Seahorse assays, metabolomics, and C13 tracings. The impact of ME1 absence on SS redox homeostasis was evaluated by metabolomics, cell death assays with inhibitors of antioxidant systems, and measurements of intracellular reactive oxygen species (ROS). The susceptibility of ME1-null SS to ferroptosis induction was interrogated in vitro and in vivo.
RESULTS: ME1 absence in SS was confirmed in clinical samples, SS cell lines, and an SS tumor model. Investigation of SS glucose metabolism revealed that ME1-null cells exhibit higher rates of glycolysis and higher flux of glucose into the pentose phosphate pathway (PPP), which is necessary to produce NADPH. Evaluation of cellular redox homeostasis demonstrated that ME1 absence shifts dependence from the glutathione system to the thioredoxin system. Concomitantly, ME1 absence drives the accumulation of ROS and labile iron. ROS and iron accumulation enhances the susceptibility of ME1-null cells to ferroptosis induction with inhibitors of xCT (erastin and ACXT-3102). In vivo xenograft models of ME1-null SS demonstrate significantly increased tumor response to ACXT-3102 compared with ME1-expressing controls.
CONCLUSIONS: These findings demonstrate the translational potential of targeting redox homeostasis in ME1-null cancers and establish the preclinical rationale for a phase I trial of ACXT-3102 in SS patients. See related commentary by Subbiah and Gan, p. 3408
Development of a multimodal mobile colposcope for real-time cervical cancer detection
Cervical cancer remains a leading cause of cancer death among women in low-and middle-income countries. Globally, cervical cancer prevention programs are hampered by a lack of resources, infrastructure, and personnel. We describe a multimodal mobile colposcope (MMC) designed to diagnose precancerous cervical lesions at the point-of-care without the need for biopsy. The MMC integrates two complementary imaging systems: 1) a commercially available colposcope and 2) a high speed, high-resolution, fiber-optic microendoscope (HRME). Combining these two image modalities allows, for the first time, the ability to locate suspicious cervical lesions using widefield imaging and then to obtain co-registered high-resolution images across an entire lesion. The MMC overcomes limitations of high-resolution imaging alone; widefield imaging can be used to guide the placement of the high-resolution imaging probe at clinically suspicious regions and co-registered, mosaicked high-resolution images effectively increase the field of view of high-resolution imaging. Representative data collected from patients referred for colposcopy at Barretos Cancer Hospital in Brazil, including 22,800 high resolution images and 9,900 colposcope images, illustrate the ability of the MMC to identify abnormal cervical regions, image suspicious areas with subcellular resolution, and distinguish between high-grade and low-grade dysplasia
Alternative donor transplantation for severe aplastic anemia: a comparative study of the SAAWP EBMT
Selecting the most suitable alternative donor becomes challenging in severe aplastic anemia (SAA) when a matched sibling donor (MSD) is unavailable. We compared outcomes in patients with SAA undergoing stem cell transplantation (SCT) from matched unrelated donors (MUD) (n = 1106), mismatched unrelated donors (MMUD) (n = 340), and haploidentical donors (Haplo) (n = 206) registered in the European Society for Blood and Marrow Transplantation database (2012-2021). For Haplo SCT, only those receiving posttransplant cyclophosphamide for graft-versus-host disease (GVHD) prophylaxis were included. Median age was 20 years, and the median time from diagnosis to transplantation 8.7 months. Compared with MUD, MMUD (hazard ratio [HR], 2.93; 95% confidence interval [CI], 1.52-5.6) and Haplo (HR, 5.15; 95% CI, 2.5-10.58) showed significantly higher risks of primary graft failure. MUD had lower rates of acute GVHD compared with MMUD and Haplo (grade 2-4: 13%, 22%, and 19%, respectively; P < .001; grade 3-4: 5%, 9%, and 7%, respectively; P = .028). The 3-year nonrelapse mortality rate was 14% for MUD, 19% for MMUD, and 27% for Haplo (P < .001), whereas overall survival and GVHD and relapse-free survival (GRFS) rates were 81% and 73% for MUD, 74% and 65% for MMUD, and 63% and 54% for Haplo, respectively (P < .001). In addition to donor type, multivariable analysis identified other factors associated with GRFS such as patient age, performance status, and interval between diagnosis and transplantation. For patients with SAA lacking an MSD, our findings support MUDs as the preferable alternative donor option. However, selecting between an MMUD and Haplo donor remains uncertain and requires further exploration.Medicin
Studying the post-COVID-19 condition: research challenges, strategies, and importance of Core Outcome Set development
Background
A substantial portion of people with COVID-19 subsequently experience lasting symptoms including fatigue, shortness of breath, and neurological complaints such as cognitive dysfunction many months after acute infection. Emerging evidence suggests that this condition, commonly referred to as long COVID but also known as post-acute sequelae of SARS-CoV-2 infection (PASC) or post-COVID-19 condition, could become a significant global health burden.
Main text
While the number of studies investigating the post-COVID-19 condition is increasing, there is no agreement on how this new disease should be defined and diagnosed in clinical practice and what relevant outcomes to measure. There is an urgent need to optimise and standardise outcome measures for this important patient group both for clinical services and for research and to allow comparing and pooling of data.
Conclusions
A Core Outcome Set for post-COVID-19 condition should be developed in the shortest time frame possible, for improvement in data quality, harmonisation, and comparability between different geographical locations. We call for a global initiative, involving all relevant partners, including, but not limited to, healthcare professionals, researchers, methodologists, patients, and caregivers. We urge coordinated actions aiming to develop a Core Outcome Set (COS) for post-COVID-19 condition in both the adult and paediatric populations
Use of inhaled corticosteroids in bronchiectasis:data from the European Bronchiectasis Registry (EMBARC)
Introduction: Current bronchiectasis guidelines advise against the use of inhaled corticosteroids (ICS) except in patients with associated asthma, allergic bronchopulmonary aspergillosis (ABPA) and/or chronic obstructive pulmonary disease (COPD). This study aimed to describe the use of ICS in patients with bronchiectasis across Europe. Methods: Patients with bronchiectasis were enrolled into the European Bronchiectasis Registry from 2015 to 2022. Patients were grouped into ICS users and non-users at baseline and clinical characteristics associated with ICS use were investigated. Patients were followed up for clinical outcomes of exacerbation, hospitalisation and mortality for up to 5 years. We evaluated if elevated blood eosinophil counts (above the laboratory upper limit of normal) modified the effect of ICS on exacerbations. Results: 19 324 patients were included for analysis and 10 109 (52.3%) were recorded as being prescribed ICS at baseline. After exclusion of patients with a history of asthma, COPD and/or ABPA, 3174/9715 (32.7%) patients with bronchiectasis were prescribed ICS. Frequency of ICS use varied across countries, ranging from 17% to 85% of included patients. ICS users had more severe disease, with significantly worse lung function, higher Bronchiectasis Severity Index scores and more frequent exacerbations at baseline (p<0.0001). Overall, ICS users did not have a reduced risk of exacerbation or hospitalisation during follow-up, but a significant reduction in exacerbation frequency was observed in the subgroup of ICS users with elevated blood eosinophil counts (relative risk 0.70, 95% CI 0.59 to 0.84, p<0.001). Conclusion: ICS use is common in bronchiectasis, including in those not currently recommended ICS according to bronchiectasis guidelines. ICS use may be associated with reduced exacerbation frequency in patients with elevated blood eosinophils.</p
Genetic architecture of human plasma lipidome and its link to cardiovascular disease
AbstractUnderstanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P −8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rateAbstract
Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
- …
