715 research outputs found
Station-Keeping Requirements for Constellations of Free-Flying Collectors Used for Astronomical Imaging in Space
The accuracy requirements on station-keeping for constellations of
free-flying collectors coupled as (future) imaging arrays in space for
astrophysics applications are examined. The basic imaging element of these
arrays is the two-element interferometer. Accurate knowledge of two quantities
is required: the \textit{projected baseline length}, which is the distance
between the two interferometer elements projected on the plane tranverse to the
line of sight to the target; and the \textit{optical path difference}, which is
the difference in the distances from that transverse plane to the beam
combiner. ``Rules-of-thumb'' are determined for the typical accuracy required
on these parameters. The requirement on the projected baseline length is a
\textit{knowledge} requirement and depends on the angular size of the targets
of interest; it is generally at a level of half a meter for typical stellar
targets, decreasing to perhaps a few centimeters only for the widest attainable
fields of view. The requirement on the optical path difference is a
\textit{control} requirement and is much tighter, depending on the bandwidth of
the signal; it is at a level of half a wavelength for narrow (few %) signal
bands, decreasing to for the broadest bandwidths expected
to be useful. Translation of these requirements into engineering requirements
on station-keeping accuracy depends on the specific details of the collector
constellation geometry. Several examples are provided to guide future
application of the criteria presented here. Some implications for the design of
such collector constellations and for the methods used to transform the
information acquired into images are discussed.Comment: 13 pages, 6 figures, accepted 6/29/07 for the August 2007 issue of
PAS
The Importance of Phase in Nulling Interferometry and a Three Telescope Closure-Phase Nulling Interferometer Concept
We discuss the theory of the Bracewell nulling interferometer and explicitly
demonstrate that the phase of the "white light" null fringe is the same as the
phase of the bright output from an ordinary stellar interferometer. As a
consequence a "closure phase" exists for a nulling interferometer with three or
more telescopes. We calculate the phase offset as a function of baseline length
for an Earth-like planet around the Sun at 10 pc, with a contrast ratio of
at 10 m. The magnitude of the phase due to the planet is radians, assuming the star is at the phase center of the array.
Although this is small, this phase may be observable in a three-telescope
nulling interferometer that measures the closure phase. We propose a simple
non-redundant three-telescope nulling interferometer that can perform this
measurement. This configuration is expected to have improved characteristics
compared to other nulling interferometer concepts, such as a relaxation of
pathlength tolerances, through the use of the "ratio of wavelengths" technique,
a closure phase, and better discrimination between exodiacal dust and planets
Optimal sequential fingerprinting: Wald vs. Tardos
We study sequential collusion-resistant fingerprinting, where the
fingerprinting code is generated in advance but accusations may be made between
rounds, and show that in this setting both the dynamic Tardos scheme and
schemes building upon Wald's sequential probability ratio test (SPRT) are
asymptotically optimal. We further compare these two approaches to sequential
fingerprinting, highlighting differences between the two schemes. Based on
these differences, we argue that Wald's scheme should in general be preferred
over the dynamic Tardos scheme, even though both schemes have their merits. As
a side result, we derive an optimal sequential group testing method for the
classical model, which can easily be generalized to different group testing
models.Comment: 12 pages, 10 figure
Direct Detection of the Brown Dwarf GJ 802B with Adaptive Optics Masking Interferometry
We have used the Palomar 200" Adaptive Optics (AO) system to directly detect
the astrometric brown dwarf GJ 802B reported by Pravdo et al. 2005. This
observation is achieved with a novel combination of aperture masking
interferometry and AO. The dynamical masses are 0.1750.021 M and
0.0640.032 M for the primary and secondary respectively. The
inferred absolute H band magnitude of GJ 802B is M=12.8 resulting in a
model-dependent T of 1850 50K and mass range of
0.057--0.074 M.Comment: 4 Pages, 5 figures, emulateapj format, submitted to ApJ
Michelson Interferometry with the Keck I Telescope
We report the first use of Michelson interferometry on the Keck I telescope
for diffraction-limited imaging in the near infrared JHK and L bands. By using
an aperture mask located close to the f/25 secondary, the 10 m Keck primary
mirror was transformed into a separate-element, multiple aperture
interferometer. This has allowed diffraction-limited imaging of a large number
of bright astrophysical targets, including the geometrically complex dust
envelopes around a number of evolved stars. The successful restoration of these
images, with dynamic ranges in excess of 200:1, highlights the significant
capabilities of sparse aperture imaging as compared with more conventional
filled-pupil speckle imaging for the class of bright targets considered here.
In particular the enhancement of the signal-to-noise ratio of the Fourier data,
precipitated by the reduction in atmospheric noise, allows high fidelity
imaging of complex sources with small numbers of short-exposure images relative
to speckle. Multi-epoch measurements confirm the reliability of this imaging
technique and our whole dataset provides a powerful demonstration of the
capabilities of aperture masking methods when utilized with the current
generation of large-aperture telescopes. The relationship between these new
results and recent advances in interferometry and adaptive optics is briefly
discussed.Comment: Accepted into Publications of the Astronomical Society of the
Pacific. To appear in vol. 112. Paper contains 10 pages, 8 figure
UNDERSTANDING RUSSLANDDEUTSCHE IDENTITY AND ITS IMPLICATIONS
The Russlanddeutsche, or Russian-Germans, are the largest group of ethnic German repatriates in Germany, having arrived in large numbers from the former Soviet Union in the 1990s. This thesis examines the relationship between Russlanddeutsche history, identity, and modern German nationalism. It employs an interdisciplinary approach, including historical analysis, sociocultural linguistics, and nationalism theory. It surveys the Russlanddeutsche experience from 18th-century Russia, through the Soviet era, and into modern Germany. It investigates the interplay between shifts in language use and ethnic self-conception over generations. Leveraging the ethnosymbolist approach from nationalism studies, this thesis argues that the Russlanddeutsche can be properly understood as an ethnie, a particular ethnic typology often associated with ideas of nationhood. With this characterization in mind, the thesis demonstrates that formerly long-standing German citizenship law placed a special emphasis on the “Germanness” of the Russlanddeutsche as a basis for their admission, setting them apart from other immigrant groups. These themes reverberate in the contemporary nationalist and anti-immigrant discourse employed by right-wing parties and Russian information operations intending to galvanize Russlanddeutsche support, in some cases to significant effect. Such politics, often incorporating a pronounced NATO-skepticism and Russophilia, pose a challenge to German and transatlantic security.Outstanding ThesisLieutenant Commander, United States NavyApproved for public release. Distribution is unlimited
A toy model of the five-dimensional universe with the cosmological constant
A value of the cosmological constant in a toy model of the five-dimensional
universe is calculated in such a manner that it remains in agreement with both
astronomical observations and the quantum field theory concerning the
zero-point fluctuations of the vacuum. The (negative) cosmological constant is
equal to the inverse of the Planck length squared, which means that in the toy
model the vanishing of the observed value of the cosmological constant is a
consequence of the existence of an energy cutoff exactly at the level of the
Planck scale. In turn, a model for both a virtual and a real
particle-antiparticle pair is proposed which describes properly some energetic
properties of both the vacuum fluctuations and created particles, as well as it
allows one to calculate the discrete "bare" values of an elementary-particle
mass, electric charge and intrinsic angular momentum (spin) at the energy
cutoff. The relationships between the discussed model and some phenomena such
as the Zitterbewegung and the Unruh-Davies effect are briefly analyzed, too.
The proposed model also allows one to derive the Lorentz transformation and the
Maxwell equations while considering the properties of the vacuum filled with
the sea of virtual particles and their antiparticles. Finally, the existence of
a finite value of the vacuum-energy density resulting from the toy model leads
us to the formulation of dimensionless Einstein field equations which can be
derived from the Lagrangian with a dimensionless (naively renormalized)
coupling constant.Comment: 52 pages, 1 figure; a post-final, rewritten version with a number of
new remarks and conclusion
Interacting Multiple Try Algorithms with Different Proposal Distributions
We propose a new class of interacting Markov chain Monte Carlo (MCMC)
algorithms designed for increasing the efficiency of a modified multiple-try
Metropolis (MTM) algorithm. The extension with respect to the existing MCMC
literature is twofold. The sampler proposed extends the basic MTM algorithm by
allowing different proposal distributions in the multiple-try generation step.
We exploit the structure of the MTM algorithm with different proposal
distributions to naturally introduce an interacting MTM mechanism (IMTM) that
expands the class of population Monte Carlo methods. We show the validity of
the algorithm and discuss the choice of the selection weights and of the
different proposals. We provide numerical studies which show that the new
algorithm can perform better than the basic MTM algorithm and that the
interaction mechanism allows the IMTM to efficiently explore the state space
Metastable precursors during the oxidation of the Ru(0001) surface
Using density-functional theory, we predict that the oxidation of the
Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in
two-dimensional islands between the first and second substrate layer. This
leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal.
Continued oxidation results in the formation and stacking of more of these
trilayers, which unfold into the RuO_2(110) rutile structure once a critical
film thickness is exceeded. Along this oxidation pathway, we identify various
metastable configurations. These are found to be rather close in energy,
indicating a likely lively dynamics between them at elevated temperatures,
which will affect the surface chemical and mechanical properties of the
material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery
We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65
micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary
observational techniques were utilized: non-redundant aperture masking on the
10-m Keck-I telescope yielding images of the innermost regions at unprecedented
resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla
attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field.
For the first time the inner dust shell has been resolved in the near-infrared
to reveal a one-sided extension of circumstellar emission within 0.1" (~15
R_star) of the star. The line-of-sight optical depths of the circumstellar dust
shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be
1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the
bolometric luminosity of VY~CMa to be estimated independent of the dust shell
geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations,
including a large scattering plume and a bow-shaped dust feature, were observed
in the faint, extended nebula up to 4" from the central source. While the
origin of the nebulous plume remains uncertain, a geometrical model is
developed assuming the plume is produced by radially-driven dust grains forming
at a rotating flow insertion point with a rotational period between 1200-4200
years, which is perhaps the stellar rotational period or the orbital period of
an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical
Journal (to appear in February 1999
- …
