200 research outputs found
Chemical evolution of ultra-faint dwarf galaxies in the self-consistently calculated IGIMF theory
The galaxy-wide stellar initial mass function (gwIMF) of a galaxy in
dependence of its metallicity and star formation rate (SFR) can be calculated
by the integrated galactic IMF (IGIMF) theory. Lacchin et al. (2019) apply the
IGIMF theory for the first time to study the chemical evolution of the
ultra-faint dwarf (UFD) satellite galaxies and failed to reproduce the data.
Here, we find that the IGIMF theory is naturally consistent with the data. We
apply the time-evolving gwIMF calculated at each timestep. The number of type
Ia supernova explosions per unit stellar mass formed is renormalised according
to the gwIMF. The chemical evolution of Bo\"otes I, one of the best observed
UFD, is calculated. Our calculation suggests a mildly bottom-light and
top-light gwIMF for Bo\"otes I, and that this UFD has the same gas-consumption
timescale as other dwarfs but was quenched about 0.1 Gyr after formation, being
consistent with independent estimations and similar to Dragonfly 44. The
recovered best fitting input parameters in this work are not covered in the
work of Lacchin et al. (2019), creating the discrepancy between our
conclusions. In addition, a detailed discussion of uncertainties is presented
addressing how the results of chemical evolution models depend on applied
assumptions. This study demonstrates the power of the IGIMF theory in
understanding the star-formation in extreme environments and shows that UDFs
are a promising pathway to constrain the variation of the low-mass stellar IMF.Comment: 17 pages, 16 figures, accepted for publication in A&
The formation of UCDs and massive GCs: Quasar-like objects for testing for a variable stellar initial mass function (IMF)
The stellar initial mas function (IMF) has been described as being invariant,
bottom heavy or top-heavy in extremely dense star burst conditions. To provide
usable observable diagnostic we calculate redshift dependent spectral energy
distributions of stellar populations in extreme star burst clusters which are
likely to have been the precursors of present day massive globular clusters
(GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of
stellar remnants is taken into account to asses the mass to light ratios of the
ageing star-burst. Their redshift dependent photometric properties are
calculated as predictions for James Webb Space Telescope (JWST) observations.
While the present day GCs and UCDs are largely degenerate concerning
bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy
IMF implies the most massive UCDs, at ages <100 Myr, to appear as objects with
quasar-like luminosities with a 0.1-10% variability on a monthly time scale due
to core collapse supernovae.Comment: Accepted for publication in A&A, 12 pages, 10 figures + appendix,
version 2: language corrections adde
The optimally-sampled galaxy-wide stellar initial mass function - Observational tests and the publicly available GalIMF code
Here we present a full description of the integrated galaxy-wide initial mass
function (IGIMF) theory in terms of the optimal sampling and compare it with
available observations. Optimal sampling is the method we use to discretize the
IMF into stellar masses deterministically. Evidence has been indicating that
nature may be closer to deterministic sampling as observations suggest a
smaller scatter of various relevant observables than random sampling would
give, which may result from a high level of self-regulation during the star
formation process. The variation of the IGIMFs under various assumptions are
documented. The results of the IGIMF theory are consistent with the empirical
relation between the total mass of a star cluster and the mass of its most
massive star, and the empirical relation between a galaxy's star formation rate
(SFR) and the mass of its most massive cluster. Particularly, we note a natural
agreement with the empirical relation between the IMF's power-law index and a
galaxy's SFR. The IGIMF also results in a relation between the galaxy's SFR and
the mass of its most massive star such that, if there were no binaries,
galaxies with SFR M/yr should host no Type II supernova
events. In addition, a specific list of initial stellar masses can be useful in
numerical simulations of stellar systems. For the first time, we show
optimally-sampled galaxy-wide IMFs (OSGIMF) which mimics the IGIMF with an
additional serrated feature. Finally, A Python module, GalIMF, is provided
allowing the calculation of the IGIMF and OSGIMF in dependence on the
galaxy-wide SFR and metallicity.Comment: 15 pages, 15 figures, A&A, in press; paper remains unchanged
(version1 equals version2); the GalIMF module is downloadable at githu
The possible role of stellar mergers for the formation of multiple stellar populations in globular clusters
Many possible scenarios for the formation of multiple stellar populations (MSP) in globular clusters (GCs) have been discussed so far, including the involvement of asymptotic giant branch stars, fast rotating main sequence stars, very massive main sequence stars and mass-transferring massive binaries based on stellar evolution modelling. But self-consistent, dynamical simulations of very young GCs are usually not considered. In this work, we perform direct -body modelling such systems with total masses up to M, taking into account the observationally constrained primordial binary properties, and discuss the stellar-mergers driven both by binary stellar evolution and dynamical evolution of GCs. The occurrence of stellar mergers is enhanced significantly in binary-rich clusters such that stars forming from the gas polluted by mergers-driven ejection/winds would appears as MSPs. We thus emphasize that stellar mergers can be an important process that connects MSP formation with star cluster dynamics, and that multiple MSP formation channels can naturally work together. The scenario studied here, also in view of a possible top-heavy IMF, may be particularly relevant for explaining the high mass fraction of MSPs (the mass budget problem) and the absence of MSPs in young and low-mass star clusters
The impact of the metallicity and star formation rate on the time-dependent galaxy-wide stellar initial mass function
The stellar initial mass function (IMF) is commonly assumed to be an
invariant probability density distribution function of initial stellar masses
being represented by the canonical IMF. As a consequence the galaxy-wide IMF
(gwIMF), defined as the sum of the IMFs of all star forming regions, should
also be invariant. Recent observational and theoretical results challenge the
hypothesis that the gwIMF is invariant. In order to study the possible reasons
for this variation we use the IMF determined in resolved star clusters and
apply the IGIMF-theory to calculate a grid of gwIMF models for metallicities,
-3<[Fe/H]<1, and galaxy-wide star formation rates,
<SFR<. For a galaxy with metallicy
[Fe/H]/yr, which is a common condition in the early
Universe, we find that the gwIMF is top-heavy (more massive stars), when
compared to the canonical IMF. For a SFR the gwIMF
becomes top-light regardless of the metallicity. For metallicities
the gwIMF can become bottom-heavy regardless of the SFR.
The IGIMF models predict that massive elliptical galaxies should have formed
with a gwIMF that is top-heavy within the first few hundred Myr of the galaxy's
life and that it evolves into a bottom-heavy gwIMF in the metal-enriched
galactic center. We study the SFRH relation, its dependency on
metallicity and the SFR, the correction factors to the Kennicutt SFRH relation, and provide new fitting functions Late-type dwarf
galaxies show significantly higher SFRs with respect to Kennicutt SFRs, while
star forming massive galaxies have significantly lower SFRs than hitherto
thought. This has implications for the gas-consumption time scales and for the
main sequence of galaxies. The Leo P and ultra-faint dwarf galaxies are
discussed explicitly. [abridged]Comment: Astronomy and Astrophysics (A&A) in press. 15 pages, 8 figure
When the tale comes true: multiple populations and wide binaries in the Orion Nebula Cluster
The high-quality OmegaCAM photometry of the 3x3 deg around the Orion Nebula
Cluster (ONC) in r, and i filters by Beccari et al.(2017) revealed three
well-separated pre-main sequences in the color-magnitude diagram (CMD). The
objects belonging to the individual sequences are concentrated towards the
center of the ONC. The authors concluded that there are two competitive
scenarios: a population of unresolved binaries and triples with an exotic mass
ratio distribution, or three stellar populations with different ages. We use
Gaia DR2 in combination with the photometric OmegaCAM catalog to test and
confirm the presence of the putative three stellar populations. We also study
multiple stellar systems in the ONC for the first time using Gaia DR2. We
confirm that the second and third sequence members are more centrally
concentrated towards the center of the ONC. In addition we find an indication
that the parallax and proper motion distributions are different among the
members of the stellar sequences. The age difference among stellar populations
is estimated to be 1-2 Myr. We use Gaia measurements to identify and remove as
many unresolved multiple system candidates as possible. Nevertheless we are
still able to recover two well-separated sequences with evidence for the third
one, supporting the existence of the three stellar populations. We were able to
identify a substantial number of wide binary objects (separation between
1000-3000 au). This challenges previously inferred values that suggested no
wide binary stars exist in the ONC. Our inferred wide-binary fraction is approx
5%. We confirm the three populations correspond to three separated episodes of
star formation. Based on this result, we conclude that star formation is not
happening in a single burst in this region. (abridged)Comment: Astronomy and Astrophysics (A&A) accepted. 12 pages, 9 figures +
appendix. New version with language corrections and new ID values in Tab.A.
Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants
Extensive surveys of star-forming regions with Spitzer have revealed
populations of disk-bearing young stellar objects. These have provided crucial
constraints, such as the timescale of dispersal of protoplanetary disks,
obtained by carefully combining infrared data with spectroscopic or X-ray data.
While observations in various regions agree with the general trend of
decreasing disk fraction with age, the Lupus V and VI regions appeared to have
been at odds, having an extremely low disk fraction. Here we show, using the
recent Gaia data release 2 (DR2), that these extremely low disk fractions are
actually due to a very high contamination by background giants. Out of the 83
candidate young stellar objects (YSOs) in these clouds observed by Gaia, only
five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and
have similar proper motions to other members in this star-forming complex. Of
these five targets, four have optically thick (Class II) disks. On the one
hand, this result resolves the conundrum of the puzzling low disk fraction in
these clouds, while, on the other hand, it further clarifies the need to
confirm the Spitzer selected diskless population with other tracers, especially
in regions at low galactic latitude like Lupus V and VI. The use of Gaia
astrometry is now an independent and reliable way to further assess the
membership of candidate YSOs in these, and potentially other, star-forming
regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter
- …
