3,107 research outputs found

    Photonic Quantum Logic with Narrowband Light from Single Atoms

    Get PDF
    Increasing control of single photons enables new applications of photonic quantum-enhanced technology and further experimental exploration of fundamental quantum phenomena. Here, we demonstrate quantum logic using narrow linewidth photons that are produced under nearly perfect quantum control from a single ^87Rb atom strongly coupled to a high-finesse cavity. We use a controlled- NOT gate integrated into a photonic chip to entangle these photons, and we observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. This enables quantum technology that will use the properties of both narrowband single photon sources and integrated quantum photonics, such as networked quantum computing, narrow linewidth quantum enhanced sensing and atomic memories.Comment: 5 pates, 3 figure

    Stem Cell Transplantation As A Dynamical System: Are Clinical Outcomes Deterministic?

    Get PDF
    Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.Comment: 23 pages, 4 figures. Updated version with additional data, 2 new figures and editorial revisions. New authors adde

    Cloud System Evolution in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSFNCAR GV

    Get PDF
    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science FoundationNational Center for Atmospheric Research (NSFNCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloudprecipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes

    Bridging Alone: Religious Conservatism, Marital Homogamy, and Voluntary Association Membership

    Full text link
    This study characterizes social insularity of religiously conservative American married couples by examining patterns of voluntary associationmembership. Constructing a dataset of 3938 marital dyads from the second wave of the National Survey of Families and Households, the author investigates whether conservative religious homogamy encourages membership in religious voluntary groups and discourages membership in secular voluntary groups. Results indicate that couples’ shared affiliation with conservative denominations, paired with beliefs in biblical authority and inerrancy, increases the likelihood of religious group membership for husbands and wives and reduces the likelihood of secular group membership for wives, but not for husbands. The social insularity of conservative religious groups appears to be reinforced by homogamy—particularly by wives who share faith with husbands

    No evidence of responding individuals constraining the evolution of the pheromone signal in the pine engraver Ips avulsus

    Get PDF
    Chemical signals are important mediators of interactions within forest ecosystems. In insects, pheromone signals mediate intraspecific interactions such as mate location and acceptance. The evolution of pheromones in insects has been mostly studied from a theoretical perspective in the Lepidoptera. With this study, we aimed to broaden our understanding of pheromone communication in bark beetles. We first demonstrated that the enantiomeric ratios of ipsdienol produced by male I. avulsus, showed little variation. Subsequently, with field trapping trials we characterized the influence of the enantiomeric ratio of ipsdienol (pheromone component of I. avulsus) on I. avulsus captures and observed a great amount of variation in the receiver preference function. Most importantly, we demonstrated that responding individuals responded indiscriminately to all the enantiomeric ratios produced by the emitting individuals. These observations are consistent with the asymmetric tracking model which postulates that if the limiting sex is the emitting sex, responding individuals should not discriminate between emitted ratios. Consequently, responding individuals do not constrain the evolution of the signal. Our data suggest that, in I. avulsus, the composition of the aggregation pheromone signal might be more responsive to external selection forces, such as predation and metabolic constraints, as suggested by the asymmetric tracking model.Louisiana State University AgCenter. Open Access provided by Natural Resources Canada.https://link.springer.com/journal/10886hj2023Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Life history traits of the Pentatomidae (Hemiptera) for the development of pest management tools

    Get PDF
    Knowledge of the biology of a pest is essential for building sustainable management programmes. Pentatomidae have a hemimetabolous life cycle with egg, nymphal, and adult life stages, which differ in morphological, ecological, and behavioural traits. Some of these traits, such as mating behaviour, pheromones (alarm and aggregation pheromones) and the acquisition of gut symbionts can be targeted for pest management strategies. Here, we review the available literature on these life history traits of the Pentatomidae with potential for use in management programmes. Pheromone-mediated aggregation and the disruption of symbiont acquisition are two important targets for Pentatomidae control. Other traits such as the use of alarm pheromones for enhancing natural enemies and substrate-borne vibration for mating disruption deserve further consideration. Colour vision and flight ability are still poorly studied, despite their potential importance for stink bug management.The University of Pretoria, the Forestry and Agricultural Biotechnology Institute (FABI), the DSI-NRF Centre of Excellence in Plant Health Biotechnology, Macadamia South Africa NPC (SAMAC) and NRF Thuthuka.https://www.mdpi.com/journal/forestsam2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyZoology and EntomologySDG-15:Life on lan

    Genetic diversity of the two-spotted stink bug Bathycoelia distincta (Pentatomidae) associated with macadamia orchards in South Africa

    Get PDF
    The South African macadamia industry is severely affected by a complex of stink bugs, dominated by the two-spotted stink bug, Bathycoelia distincta Distant (Pentatomidae). This species was first discovered during the spring of 1984 in the Limpopo province. Although considerable effort has been spent trying to manage this pest, it continues to be a pest of concern for the macadamia industry. Information on the genetic diversity of this species is lacking, despite the potential relevance of such information for management strategies. The present study aimed to characterise the genetic diversity of B. distincta populations in South Africa. The Cytochrome c Oxidase Subunit 1 (COI) and cytochrome b (Cytb) gene regions were sequenced from individuals collected from the three main regions of macadamia production over three different seasons (2018–2020). An overall high haplotype diversity (COI = 0.744, Cytb = 0.549 and COI+Cytb = 0.875) was observed. Pairwise mean genetic distance between populations from each region varied from 0.2–0.4% in both datasets, which suggests the absence of cryptic species. The median joining network for both datasets consisted of one or two central haplotypes shared between the regions in addition to unique haplotypes observed in each region. Finally, low genetic differentiation (FST < 0.1), high gene flow (Nm > 1) and the absence of a correlation between genetic and geographic distance were estimated among populations. Overall, these results suggest that the B. distincta populations are not structured among the areas of macadamia production in South Africa. This might be due to its ability to feed and reproduce on various plants and its high dispersal (airborne) between the different growing regions of the country along with the rapid expansion of macadamia plantations in South Africa.SUPPORTING INFORMATION : FIGURE S1. Isolation by distance of Bathycoelia distincta populations for COI marker (Mantel test, r = 0.731, P > 0.05). FIGURE S2. Isolation by distance of Bathycoelia distincta populations for Cytb marker (Mantel test, r = 0.310, P > 0.05). FIGURE S3. Isolation by distance of Bathycoelia distincta populations for COI+Cytb combined marker (Mantel test, r = 0.669, P > 0.05). TABLE S1. List of the individual for each haplotype generated in the study for the COI marker. TABLE S2. List of the individual for each haplotype generated in the study for the Cytb marker. TABLE S3. List of the individual for each haplotype generated in the study for the COI +Cytb combined markers.The University of Pretoria, the Forestry and Agricultural Biotechnology Institute (FABI), the Centre for Excellence in Plant Biotechnology (CPHB), Macadamia South Africa NPC (SAMAC) and NRF Thuthuka.http://www.plosone.orgdm2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyZoology and Entomolog
    corecore