148 research outputs found
Loading Dynamics of a sliding DNA clamp
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli beta clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the g clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 88 during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the b clamp during loading at a ss/dsDNA junction.X1156Ysciescopu
Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach
The bacterial sliding clamp (SC), also known as the DNA polymerase III β subunit, is an emerging antibacterial target that plays a central role in DNA replication, serving as a protein-protein interaction hub with a common binding pocket to recognize linear motifs in the partner proteins. Here, fragment-based screening using X-ray crystallography produced four hits bound in the linear-motif-binding pocket of the Escherichia coli SC. Compounds structurally related to the hits were identified that inhibited the E. coli SC and SC-mediated DNA replication in vitro. A tetrahydrocarbazole derivative emerged as a promising lead whose methyl and ethyl ester prodrug forms showed minimum inhibitory concentrations in the range of 21-43 μg/mL against representative Gram-negative and Gram-positive bacteria species. The work demonstrates the utility of a fragment-based approach for identifying bacterial sliding clamp inhibitors as lead compounds with broad-spectrum antibacterial activity. © 2014 American Chemical Society
Exchange between Escherichia coli polymerases II and III on a processivity clamp
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork
Solution structure of Domains IVa and V of the τ subunit of Escherichia coli DNA polymerase III and interaction with the α subunit
The solution structure of the C-terminal Domain V of the τ subunit of E. coli DNA polymerase III was determined by nuclear magnetic resonance (NMR) spectroscopy. The fold is unique to τ subunits. Amino acid sequence conservation is pronounced for hydrophobic residues that form the structural core of the protein, indicating that the fold is representative for τ subunits from a wide range of different bacteria. The interaction between the polymerase subunits τ and α was studied by NMR experiments where α was incubated with full-length C-terminal domain (τC16), and domains shortened at the C-terminus by 11 and 18 residues, respectively. The only interacting residues were found in the C-terminal 30-residue segment of τ, most of which is structurally disordered in free τC16. Since the N- and C-termini of the structured core of τC16 are located close to each other, this limits the possible distance between α and the pentameric δτ2γδ′ clamp–loader complex and, hence, between the two α subunits involved in leading- and lagging-strand DNA synthesis. Analysis of an N-terminally extended construct (τC22) showed that τC14 presents the only part of Domains IVa and V of τ which comprises a globular fold in the absence of other interaction partners
The proofreading exonuclease subunit ε of Escherichia coli DNA polymerase III is tethered to the polymerase subunit α via a flexible linker
Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the α-subunit. The ε-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to α via a segment of 57 additional C-terminal residues, and also to θ, whose function is less well defined. The present study shows that θ greatly enhances the solubility of ε during cell-free synthesis. In addition, synthesis of ε in the presence of θ and α resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. Cell-free synthesis of ε from PCR-amplified DNA coupled with site-directed mutagenesis and selective 15N-labeling provided site-specific assignments of NMR resonances of ε that were confirmed by lanthanide-induced pseudocontact shifts. The data show that the proofreading domain of ε is connected to α via a flexible linker peptide comprising over 20 residues. This distinguishes the α : ε complex from other proofreading polymerases, which have a more rigid multidomain structure
Real-time single-molecule observation of rolling-circle DNA replication
We present a simple technique for visualizing replication of individual DNA molecules in real time. By attaching a rolling-circle substrate to a TIRF microscope-mounted flow chamber, we are able to monitor the progression of single-DNA synthesis events and accurately measure rates and processivities of single T7 and Escherichia coli replisomes as they replicate DNA. This method allows for rapid and precise characterization of the kinetics of DNA synthesis and the effects of replication inhibitors
- …
